首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
ABSTRACT:?

β-Glucosidases constitute a major group among glycosylhydrolase enzymes. Out of the 82 families classified under glycosylhydrolase category, these belong to family 1 and family 3 and catalyze the selective cleavage of glucosidic bonds. This function is pivotal in many crucial biological pathways, such as degradation of structural and storage polysaccharides, cellular signaling, oncogenesis, host-pathogen interactions, as well as in a number of biotechnological applications. In recent years, interest in these enzymes has gained momentum owing to their biosynthetic abilities. The enzymes exhibit utility in syntheses of diverse oligosaccharides, glycoconjugates, alkyl- and amino-glucosides. Attempts are being made to understand the structure-function relationship of these versatile biocatalysts. Earlier reviews described the sources and properties of microbial β-glucosidases, yeast β-glucosidases, thermostable fungal β-glucosidase, and the physiological functions, characteristics, and catalytic action of native β-glucosidases from various plant, animal, and microbial sources. Recent efforts have been directed towards molecular cloning, sequencing, mutagenesis, and crystallography of the enzymes. The aim of the present article is to describe the sources and properties of recombinant β-glucosidases, their classification schemes based on similarity at the structural and molecular levels, elucidation of structure-function relationships, directed evolution of existing enzymes toward enhanced thermostability, substrate range, biosynthetic properties, and applications.  相似文献   

3.
Neutrophil migration in zebrafish larvae is increasingly used as a model to study the response of these leukocytes to different determinants of the cellular inflammatory response. However, it remains challenging to extract comprehensive information describing the behaviour of neutrophils from the multi-dimensional data sets acquired with widefield or confocal microscopes. Here, we describe PhagoSight, an open-source software package for the segmentation, tracking and visualisation of migrating phagocytes in three dimensions. The algorithms in PhagoSight extract a large number of measurements that summarise the behaviour of neutrophils, but that could potentially be applied to any moving fluorescent cells. To derive a useful panel of variables quantifying aspects of neutrophil migratory behaviour, and to demonstrate the utility of PhagoSight, we evaluated changes in the volume of migrating neutrophils. Cell volume increased as neutrophils migrated towards the wound region of injured zebrafish. PhagoSight is openly available as MATLAB® m-files under the GNU General Public License. Synthetic data sets and a comprehensive user manual are available from http://www.phagosight.org.  相似文献   

4.
Education is one of the multiple services that ecosystems and landscapes provide to societies. Despite its importance to formal and informal learning and nature-based, cognitive tourism, it is hardly taken into account in the various quantification approaches of ecosystem services. The article provides an overview of landscape educational values and the educational ecosystem service. Here, the forms of the use of landscape educational values have been summarised and the indicators for the quantification of the educational ecosystem service proposed in the literature reviewed. The criteria for the evaluation of the educational values of landscape were acquired from the literature and discussed. In order to obtain more practical viewpoints on those criteria, an exploratory survey with young experts (n = 37) from two universities of environmental sciences was conducted. Within this step, the expert method for the evaluation of the educational values of landscapes was applied. However, the results show an extremely high level of subjectivity and dependence on personal experience regarding outdoor environmental education. Nonetheless, the article can contribute to acquiring knowledge in cultural ecosystem service assessment and the application of this concept, especially in terms of the criteria and indicators which can be potentially used for the assessments.  相似文献   

5.
6.
Synapses are asymmetric intercellular junctions that mediate neuronal communication. The number, type, and connectivity patterns of synapses determine the formation, maintenance, and function of neural circuitries. The complexity and specificity of synaptogenesis relies upon modulation of adhesive properties, which regulate contact initiation, synapse formation, maturation, and functional plasticity. Disruption of adhesion may result in structural and functional imbalance that may lead to neurodevelopmental diseases, such as autism, or neurodegeneration, such as Alzheimer''s disease. Therefore, understanding the roles of different adhesion protein families in synapse formation is crucial for unraveling the biology of neuronal circuit formation, as well as the pathogenesis of some brain disorders. The present review summarizes some of the knowledge that has been acquired in vertebrate and invertebrate genetic model organisms.Synapses are asymmetric, intercellular junctions that are the basic structural units of neuronal transmission. The correct development of synaptic specializations and the establishment of appropriate connectivity patterns are crucial for the assembly of functional neuronal circuits. Improper synapse formation and function may cause neurodevelopmental disorders, such as mental retardation (MsR) and autism spectrum disorders (ASD) (McAllister 2007; Sudhof 2008), and likely play a role in neurodegenerative disorders, such as Alzheimer''s disease (AD) (Haass and Selkoe 2007).At chemical synapses (reviewed in Sudhof 2004; Zhai and Bellen 2004; Waites et al. 2005; McAllister 2007; Jin and Garner 2008), the presynaptic compartment contains synaptic vesicles (SV), organized in functionally distinct subcellular pools. A subset of SVs docks to the presynaptic membrane around protein-dense release sites, named active zones (AZ). Upon the arrival of an action potential at the terminal, the docked and “primed” SVs fuse with the plasma membrane and release neurotransmitter molecules into the synaptic cleft. Depending on the type of synapse (i.e., excitatory vs. inhibitory synapses), neurotransmitters ultimately activate an appropriate set of postsynaptic receptors that are accurately apposed to the AZ.Synapse formation occurs in several steps (Fig. 1) (reviewed in Eaton and Davis 2003; Goda and Davis 2003; Waites et al. 2005; Garner et al. 2006; Gerrow and El-Husseini 2006; McAllister 2007). Spatiotemporal signals guide axons through heterogeneous cellular environments to contact appropriate postsynaptic targets. At their destination, axonal growth cones initiate synaptogenesis through adhesive interactions with target cells. In the mammalian central nervous system (CNS), immature postsynaptic dendritic spines initially protrude as thin, actin-rich filopodia on the surface of dendrites. Similarly, at the Drosophila neuromuscular junction (NMJ), myopodia develop from the muscles (Ritzenthaler et al. 2000). The stabilization of intercellular contacts and their elaboration into mature, functional synapses involves cytoskeletal arrangements and recruitment of pre- and postsynaptic components to contact sites in spines and boutons. Conversely, retraction of contacts results in synaptic elimination. Both stabilization and retraction sculpt a functional neuronal circuitry.Open in a separate windowFigure 1.(A–C) Different stages of synapse formation. (A) Target selection, (B) Synapse assembly, (C) Synapse maturation and stabilization. (D–F) The role of cell adhesion molecules in synapse formation is exemplified by the paradigm of N-cadherin and catenins in regulation of the morphology and strength of dendritic spine heads. (D) At an early stage the dendritic spines are elongated from motile structures “seeking” their synaptic partners. (E) The contacts between the presynaptic and postsynaptic compartments are stabilized by recruitment of additional cell adhesion molecules. Adhesional interactions activate downstream pathways that remodel the cytoskeleton and organize pre- and postsynaptic apparatuses. (F) Cell adhesion complexes, stabilized by increased synaptic activity, promote the expansion of the dendritic spine head and the maturation/ stabilization of the synapse. Retraction and expansion is dependent on synaptic plasticity.In addition to the plastic nature of synapse formation, the vast heterogeneity of synapses (in terms of target selection, morphology, and type of neurotransmitter released) greatly enhances the complexity of synaptogenesis (reviewed in Craig and Boudin 2001; Craig et al. 2006; Gerrow and El-Husseini 2006). The complexity and specificity of synaptogenesis relies upon the modulation of adhesion between the pre- and postsynaptic components (reviewed in Craig et al. 2006; Gerrow and El-Husseini 2006; Piechotta et al. 2006; Dalva et al. 2007; Shapiro et al. 2007; Yamada and Nelson 2007; Gottmann 2008). Cell adhesive interactions enable cell–cell recognition via extracellular domains and also mediate intracellular signaling cascades that affect synapse morphology and organize scaffolding complexes. Thus, cell adhesion molecules (CAMs) coordinate multiple synaptogenic steps.However, in vitro and in vivo studies of vertebrate CAMs are often at odds with each other. Indeed, there are no examples of mutants for synaptic CAMs that exhibit prominent defects in synapse formation. This apparent “resilience” of synapses is probably caused by functional redundancy or compensatory effects among different CAMs (Piechotta et al. 2006). Hence, studies using simpler organisms less riddled by redundancy, such as Caenorhabditis elegans and Drosophila, have aided in our understanding of the role that these molecules play in organizing synapses.In this survey, we discuss the roles of the best characterized CAM families of proteins involved in synaptogenesis. Our focus is to highlight the complex principles that govern the molecular basis of synapse formation and function from a comparative perspective. We will present results from cell culture studies as well as in vivo analyses in vertebrate systems and refer to invertebrate studies, mainly performed in Drosophila and C. elegans, when they have provided important insights into the role of particular CAM protein families. However, we do not discuss secreted factors, for which we refer the reader to numerous excellent reviews (as for example Washbourne et al. 2004; Salinas 2005; Piechotta et al. 2006; Shapiro et al. 2006; Dalva 2007; Yamada and Nelson 2007; Biederer and Stagi 2008; Salinas and Zou 2008).  相似文献   

7.
8.
The free energy of transfer of nonpolar solutes from water to lipid bilayers is often dominated by a large negative enthalpy rather than the large positive entropy expected from the hydrophobic effect. This common observation has led to the idea that membrane partitioning is driven by the "nonclassical" hydrophobic effect. We examined this phenomenon by characterizing the partitioning of the well-studied peptide melittin using isothermal titration calorimetry (ITC) and circular dichroism (CD). We studied the temperature dependence of the entropic (-TΔS) and enthalpic (ΔH) components of free energy (ΔG) of partitioning of melittin into lipid membranes made of various mixtures of zwitterionic and anionic lipids. We found significant variations of the entropic and enthalpic components with temperature, lipid composition and vesicle size but only small changes in ΔG (entropy-enthalpy compensation). The heat capacity associated with partitioning had a large negative value of about -0.5 kcal mol(-1) K(-1). This hallmark of the hydrophobic effect was found to be independent of lipid composition. The measured heat capacity values were used to calculate the hydrophobic-effect free energy ΔG (hΦ), which we found to dominate melittin partitioning regardless of lipid composition. In the case of anionic membranes, additional free energy comes from coulombic attraction, which is characterized by a small effective peptide charge due to the lack of additivity of hydrophobic and electrostatic interactions in membrane interfaces [Ladokhin and White J Mol Biol 309:543-552, 2001]. Our results suggest that there is no need for a special effect-the nonclassical hydrophobic effect-to describe partitioning into lipid bilayers.  相似文献   

9.
10.
11.
12.
13.
14.
Parkinson’s disease (PD) is characterized pathologically by intraneuronal inclusions called Lewy bodies, largely comprised of α-synuclein. Multiplication of the α-synuclein gene locus increases α-synuclein expression and causes PD. Thus, overexpression of wild-type α-synuclein is toxic. In this study, we demonstrate that α-synuclein overexpression impairs macroautophagy in mammalian cells and in transgenic mice. Our data show that α-synuclein compromises autophagy via Rab1a inhibition and Rab1a overexpression rescues the autophagy defect caused by α-synuclein. Inhibition of autophagy by α-synuclein overexpression or Rab1a knockdown causes mislocalization of the autophagy protein, Atg9, and decreases omegasome formation. Rab1a, α-synuclein, and Atg9 all regulate formation of the omegasome, which marks autophagosome precursors.  相似文献   

15.
16.
The aim of this study was to demonstrate the role of advanced fabrication technology across a broad spectrum of head and neck surgical procedures, including applications in endoscopic sinus surgery, skull base surgery, and maxillofacial reconstruction. The initial case studies demonstrated three applications of rapid prototyping technology are in head and neck surgery: i) a mono-material paranasal sinus phantom for endoscopy training ii) a multi-material skull base simulator and iii) 3D patient-specific mandible templates. Digital processing of these phantoms is based on real patient or cadaveric 3D images such as CT or MRI data. Three endoscopic sinus surgeons examined the realism of the endoscopist training phantom. One experienced endoscopic skull base surgeon conducted advanced sinus procedures on the high-fidelity multi-material skull base simulator. Ten patients participated in a prospective clinical study examining patient-specific modeling for mandibular reconstructive surgery. Qualitative feedback to assess the realism of the endoscopy training phantom and high-fidelity multi-material phantom was acquired. Conformance comparisons using assessments from the blinded reconstructive surgeons measured the geometric performance between intra-operative and pre-operative reconstruction mandible plates. Both the endoscopy training phantom and the high-fidelity multi-material phantom received positive feedback on the realistic structure of the phantom models. Results suggested further improvement on the soft tissue structure of the phantom models is necessary. In the patient-specific mandible template study, the pre-operative plates were judged by two blinded surgeons as providing optimal conformance in 7 out of 10 cases. No statistical differences were found in plate fabrication time and conformance, with pre-operative plating providing the advantage of reducing time spent in the operation room. The applicability of common model design and fabrication techniques across a variety of otolaryngological sub-specialties suggests an emerging role for rapid prototyping technology in surgical education, procedure simulation, and clinical practice.  相似文献   

17.
According to Charles Hauss, “[i]n the last few years, reconciliation has become one of the ‘hottest’ topics in the increasingly ‘hot’ field of conflict resolution” (2003, ?1). However, despite the apparent interest in this “hot” academic topic (which is becoming increasingly warm in Canada as our own Truth and Reconciliation Commission commences), reconciliation studies have been dominated by Truth-based approaches. The restrictions of these approaches, which emphasize objectivity and rationality, often elide the body and the primacy of emotions in the reparative process. This essay begins a conversation on the role of the body and emotion in the study of reconciliation by engaging the work being done in the social sciences with contemporary trends in critical theory and literature. I argue that by looking at the fundamental role the body plays on the “road to reconciliation” we can devise a more vital approach to conflict resolution and the various processes that make it up.  相似文献   

18.
19.
Abstract

LNA and α-L-LNA are promising candidates for the development of efficient oligonucleotide-based therapeutic agents. Here, we report dose-dependent inhibition of HIV-1 Tat-dependent trans activation by a 12-mer chimeric α-L-LNA/DNA oligomer. This oligomer exhibits a dose-dependency similar to that of the corresponding 12-mer chimeric LNA/2′-O-Me-RNA oligomer. In addition, we show that incorporation of α-L-LNA or LNA monomers into each of the two binding arms of a “10–23” DNAzyme markedly increases cleavage of the target RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号