首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The forces driving extra-pair reproduction by socially monogamous females, and the resulting genetic polyandry, remain unclear. A testable prediction of the hypothesis that extra-pair reproduction partly reflects indirect selection on females is that extra-pair young (EPY) will be fitter than their within-pair young (WPY) maternal half-siblings. This prediction has not been comprehensively tested in a wild population, requiring data on the lifetime reproductive success (LRS) of maternal half-sib EPY and WPY. We used 17 years of genetic parentage data from song sparrows, Melospiza melodia, to compare the LRS of hatched EPY and WPY maternal half-siblings measured as their lifetime number of hatched offspring, recruited offspring, and hatched grandoffspring. EPY hatchlings were not significantly fitter than WPY hatchlings for any of three measures of LRS. Furthermore, opposite to prediction, EPY hatchlings tended to have lower LRS than their maternal half-sibling WPY hatchlings on average. EPY also tended to be less likely to survive to hatch than their maternal half-sibling WPY. Taken together, these results fail to support one key hypothesis explaining the evolution of genetic polyandry by socially monogamous females and suggest there may be weak indirect selection against female extra-pair reproduction in song sparrows.  相似文献   

2.
Numerous studies have tested for indirect selection on female extra-pair reproduction (EPR) by quantifying whether extra-pair young (EPY) are fitter than their within-pair young (WPY) maternal half-siblings. In contrast, the hypothesis that offspring of EPY and WPY (rather than the EPY and WPY themselves) differ in fitness has not been tested, even though inter-generational effects of parental extra-pair status on offspring fitness could alter the magnitude and direction of indirect selection on EPR. We tested whether offspring of EPY song sparrows, Melospiza melodia, were more likely to recruit or produce hatched or recruited offspring over their lifetimes than offspring of WPY. Hatchlings with one or two EPY parents were more likely to recruit and produce hatched offspring than hatchlings with two WPY parents. Furthermore, these relationships differed between maternal versus paternal extra-pair status. Hatchlings with EPY fathers were more likely to recruit and produce offspring than hatchlings with WPY fathers. In contrast, hatchlings with EPY mothers were as likely to recruit as hatchlings with WPY mothers and tended to be less likely to produce recruited offspring. Depending on the causal genetic and environmental mechanisms, such conflicting inter-generational relationships between parental extra-pair status and offspring fitness could substantially influence the evolutionary dynamics of EPR.  相似文献   

3.
1. In socially monogamous species, females may seek extra-pair copulation to gain genetic benefits. In order to test this 'genetic quality' hypothesis, one must compare the performance of extra-pair young (EPY) and within-pair young (WPY). Such tests, however, are scarce and results published so far are inconclusive. 2. Here, we test the 'genetic quality' hypothesis using multistate capture-recapture models to compare age-specific survival and access to dominance between EPY and WPY in the alpine marmot Marmota marmota, a socially monogamous mammal showing extra-pair paternities. 3. When compared with WPY, survival of EPY was higher by 15%, 10% and 30%, for juveniles, yearlings and 2-year-old individuals, respectively. Survival at older ages did not differ. 4. Survival corresponded to true survival for yearlings and juveniles as dispersal does not occur before 2 years of age in marmots. For older individuals, survival estimates included a mixture of survival and dispersal. The 30% increase of the 2-year-old EPY survival might reflect delayed dispersal rather than high survival of EPY as compared with WPY. 5. WPY and EPY had the same probability (0.28) to access dominance at 2 years of age, but EPY were more successful at older ages than WPY (0.46 vs. 0.10). 6. Both survival and reproductive performance were higher in EPY than in WPY. The fitness advantages of adopting such a mixed mating tactic are thus likely to be high for marmot females. We suggest that obtaining genetic benefits is the main evolutionary force driving extra-pair paternity in alpine marmots.  相似文献   

4.
Females of many socially monogamous species accept or even actively seek copulations outside the social pair bond. As females cannot increase the number of offspring with promiscuous behaviour, the question arises why they engage in extra-pair mating. We used microsatellite data to determine paternity, heterozygosity and genetic relatedness in the reed bunting (Emberiza schoeniclus), a species with high levels of extra-pair paternity (EPP). We found that extra-pair young (EPY) were more heterozygous than within-pair young (WPY). The high heterozygosity of the EPY resulted from a low genetic similarity between females and their extra-pair mates. EPY were heavier and larger when compared with their maternal half-siblings shortly before they left the nest. Recapture data indicated a higher fledgling survival of EPY compared with WPY. Our data suggest that reed bunting females increase the viability of their offspring and thus fitness through extra-pair mating with genetically dissimilar males.  相似文献   

5.
House wrens are typically socially monogamous, but frequently engage in extra-pair matings leading to multisired broods. Because females do not appear to acquire direct material benefits from their extra-pair mates, we tested the hypothesis that female house wrens derive indirect genetic benefits, such as enhanced immunocompetence (cutaneous immune activity, humoral immunity, and plasma bactericidal activity) and condition (size and haematoserological traits) for their offspring, by mating polyandrously. We predicted that extra-pair young (EPY) should show greater immune responsiveness and better body condition than their within-pair maternal half-siblings (WPY). Contrary to our prediction, WPY had higher cutaneous immune activity than their EPY brood-mates in two of three years, and EPY and WPY did not differ in measures of innate and humoral immunity. WPY also had higher albumin to γ-globulin ratios than EPY; however, they were not in better condition based on other measures. EPY had consistently longer tarsi (a measure of long-bone size) than their WPY half-siblings, suggesting that females engage in extra-pair copulations with larger males. The benefits of large structural size in the study population is unknown, but based on evidence from other passerines, we suggest that structural size may be an important fitness-related trait in house wrens. We conclude that our results are not consistent with the hypothesis that females gain immune-related benefits for their offspring by engaging in extra-pair matings. Further study of the fitness consequences of differences in tarsus length is needed to determine whether females acquire size-related benefits for their offspring from extra-pair mates.  相似文献   

6.
Female mate choice is responsible for the evolution of male secondary sexual ornaments. If male ornamental traits reflect indirect, genetic benefits and/or direct, material benefits to females, choosy females may benefit from their choice, indirectly and/or directly. We examined a breeding population of Japanese barn swallows Hirundo rustica gutturalis to determine whether male tail streamer length reflected indirect and/or direct benefits to females. There was no significant positive relationship between male streamer length and the number of extra-pair young (EPY) sired, suggesting that male tail streamers are not a signal of indirect benefits (i.e. good genes theory). In addition, we found no evidence that males with longer streamers fed their offspring more frequently or sired more within-pair young (WPY). The result indicates that male streamer length probably does not act as a signal of direct benefits. Our finding that the length of tail streamers in Japanese barn swallows plays no role in sexual selection is not consistent with studies on European subspecies, but is consistent with studies on North American subspecies where sexual selection on tail streamer is weak. The present study supports the recent suggestion that the pattern of sexual selection on tail streamer length in barn swallows varies geographically. Instead of tail length, males in better condition sired more EPY and WPY. Males in better condition, however, did not feed their nestling more frequently. These results indicate that females gain indirect benefits but not direct benefits, in terms of feeding of young, on choosing social mates.  相似文献   

7.
Female promiscuity is widespread in birds, as well as in other taxa. It is often assumed that in bird species with a socially monogamous mating system, females engage in extrapair copulations to obtain indirect (genetic) benefits. ‘Good genes’ and ‘compatible genes’ models predict that extrapair young (EPY) should be of higher quality than within-pair young (WPY), but the empirical evidence for this effect is limited. A recent study, however, indicated an enhanced cellular immunity in EPY in a passerine bird, the bluethroat, Luscinia svecica. To assess the generality of that finding, we replicated the study using the reed bunting, a passerine with an extrapair mating system similar to that of the bluethroat. Using the same immune assay protocol, we found no indication of enhanced cellular immunity in EPY compared with WPY. Female reed buntings thus do not seem to engage in extrapair copulations to achieve the same type of genetic benefit as in bluethroats. Furthermore, EPY in mixed-paternity broods did not grow faster and were not in better body condition close to fledging than WPY. We conclude that our results do not support the hypotheses assuming indirect benefits to female extrapair copulations. It appears that the adaptive value for females of pursuing extrapair fertilizations varies, even between species with similar extrapair mating systems.  相似文献   

8.
The hypothesis that female extra-pair reproduction in socially monogamous animals reflects indirect genetic benefits requires that there be additive and/or nonadditive genetic variance in fitness. However, the specific hypotheses that male extra-pair reproductive success (EPRS) shows additive genetic variance (V(A)), heritability (h2), or inbreeding depression, and hence that females could acquire indirect genetic benefits through increased EPRS of sons, have not been explicitly tested. We used comprehensive genetic pedigree data from song sparrows (Melospiza melodia) to estimate V(A), h2, and inbreeding depression in the number of extra-pair offspring a male sired per year and the probability that a male would sire any extra-pair offspring per year. Inbreeding depression was substantial: more inbred males sired fewer extra-pair offspring and were less likely to sire any extra-pair offspring. In contrast, estimates of V(A) and h2 were close to 0, although 95% credible intervals were relatively wide. These data suggest that females could accrue indirect genetic benefits, in terms of increased EPRS of outbred sons, by mating with unrelated social or extra-pair mates. In contrast, any indirect benefit of extra-pair reproduction in terms of producing sons with high additive genetic value for EPRS is most likely to be small.  相似文献   

9.
Across birds, male age is the most consistent predictor of extra-pair siring success, yet little is known about age effects on paternity over the lifetime of individuals. Here, we use data from a 13-year study of a population of blue tits (Cyanistes caeruleus) to investigate how extra-pair siring success changes with age within individuals. Our results indicate that extra-pair siring success does not continuously increase with male age. Instead, siring success was related to male age in a threshold fashion, whereby yearling males were less likely to gain paternity than older males. This effect was independent of the age of the social partner, but influenced by the age of the extra-pair female: success of yearlings at siring extra-pair young (EPY) with older females was even lower. Among males that sired at least one EPY, the number of extra-pair mates and the proportion of EPY sired were unrelated to male age. We found no evidence for an influence of selective disappearance on extra-pair reproduction. Senescence, if anything, only occurs at ages blue tits rarely reach. A literature review indicates that an effect of male age on extra-pair siring success may be limited to the switch from yearling to older in many species. Thus, the generally observed age effect on male extra-pair siring success may be linked to age class rather than continuous ageing. This suggests that lack of experience or not fully completed maturation are important drivers of age patterns in extra-pair paternity.  相似文献   

10.
One specific hypothesis explaining the evolution of extra-pair reproduction (EPR) by socially monogamous females is that EPR is under indirect selection because extra-pair offspring (EPO) sired by extra-pair males have higher additive genetic value for fitness than the within-pair offspring (WPO) a female would have produced had she solely mated with her socially paired male. This hypothesis has not been explicitly tested by comparing additive genetic value between EPO and the WPO they replaced. We show that the difference in additive genetic breeding value (BV) between EPO and the WPO they replaced is proportional to the genetic covariance between offspring fitness and male net paternity gain through EPR, and estimate this covariance with respect to offspring recruitment in free-living song sparrows (Melospiza melodia). Recruitment and net paternity gain showed non-zero additive genetic variance and heritability, and negative genetic covariance. Opposite to prediction, EPO therefore had lower BV for recruitment than the WPO they replaced. We thereby demonstrate an explicit quantitative genetic approach to testing the hypothesis that EPR allows polyandrous females to increase offspring additive genetic value, and suggest that there may be weak indirect selection against female EPR through reduced additive genetic value for recruitment of EPO versus WPO in song sparrows.  相似文献   

11.
The hypothesis that females of socially monogamous species obtain indirect benefits (good or compatible genes) from extra-pair mating behaviour has received enormous attention but much less generally accepted support. Here we ask whether selection for adult survival and fecundity or sexual selection contribute to indirect selection of the extra-pair mating behaviour in socially monogamous coal tits (Periparus ater). We tracked locally recruited individuals with known paternity status through their lives predicting that the extra-pair offspring (EPO) would outperform the within-pair offspring (WPO). No differences between the WPO and EPO recruits were detected in lifespan or age of first reproduction. However, the male WPO had a higher lifetime number of broods and higher lifetime number of social offspring compared with male EPO recruits, while no such differences were evident for female recruits. Male EPO recruits did not compensate for their lower social reproductive success by higher fertilization success within their social pair bonds. Thus, our results do not support the idea that enhanced adult survival, fecundity or within-pair fertilization success are manifestations of the genetic benefits of extra-pair matings. But we emphasize that a crucial fitness component, the extra-pair fertilization success of male recruits, has yet  相似文献   

12.
The forces driving the evolution of extra-pair reproduction in socially monogamous animals remain widely debated and unresolved. One key hypothesis is that female extra-pair reproduction evolves through indirect genetic benefits, reflecting increased additive genetic value of extra-pair offspring. Such evolution requires that a female's propensity to produce offspring that are sired by an extra-pair male is heritable. However, additive genetic variance and heritability in female extra-pair paternity (EPP) rate have not been quantified, precluding accurate estimation of the force of indirect selection. Sixteen years of comprehensive paternity and pedigree data from socially monogamous but genetically polygynandrous song sparrows (Melospiza melodia) showed significant additive genetic variance and heritability in the proportion of a female's offspring that was sired by an extra-pair male, constituting major components of the genetic architecture required for extra-pair reproduction to evolve through indirect additive genetic benefits. However, estimated heritabilities were moderately small (0.12 and 0.18 on the observed and underlying latent scales, respectively). The force of selection on extra-pair reproduction through indirect additive genetic benefits may consequently be relatively weak. However, the additive genetic variance and non-zero heritability observed in female EPP rate allow for multiple further genetic mechanisms to drive and constrain mating system evolution.  相似文献   

13.
Krist M  Munclinger P 《Molecular ecology》2011,20(23):5074-5091
Extra-pair copulations (EPC) are the rule rather than an exception in socially monogamous birds, but despite widespread occurrences, the benefits of female infidelity remain elusive. Most attention has been paid to the possibility that females gain genetic benefits from EPC, and fitness comparisons between maternal half-siblings are considered to be a defining test of this hypothesis. Recently, it was shown that these comparisons may be confounded by within-brood maternal effects where one such effect may be the distribution of half-siblings in the laying order. However, this possibility is difficult to study as it would be necessary to detect the egg from which each chick hatched. In this study, we used a new approach for egg-chick assignment and cross-fostered eggs on an individual basis among a set of nests of the collared flycatcher Ficedula albicollis. After hatching, chicks were ascribed to mothers and therefore to individual eggs by molecular genetic methods. Extra-pair young predominated early in the laying order. Under natural conditions, this should give them a competitive advantage over their half-siblings, mediated by hatching asynchrony. However, we experimentally synchronized hatching, and after this treatment, extra-pair young did not outperform within-pair young in any studied trait including survival up to recruitment and several indicators of reproductive success and attractiveness. We obtained only modest sample sizes for the last two traits and did not test for extra-pair success of male offspring. Thus, we cannot exclude the possibility of advantages of extra-pair young during the adult phase of life. However, our data tentatively suggest that the more likely reason for females' EPCs is the insurance against the infertility of a social mate.  相似文献   

14.
The occurrence of extrapair paternity (EPP) in birds is oftenattributed to the action of good-genes sexual selection wherebyfemales "trade up" on male genetic quality by allocating fertilizationsto males with better genes than those possessed by their socialmate. To date, most studies of EPP in birds focus on absolutemeasures of male quality as a criterion for female choice, althoughmultiple mating by females in other taxa is more commonly ascribedto benefits associated with the individual optimization of offspringgenotypes. Here, we examine whether the genetic similarity ofsocial mates predicts female mating patterns in a populationof Savannah sparrows (Passerculus sandwichensis) where as manyas 70% of adults produce extrapair young (EPY). We considerthe influence of genetic similarity across all stages of a female'sdecision-making process, from pair formation through the decisionto produce EPY, to the allocation of fertilizations to specificextrapair sires. In a 4-year study of 175 males, 206 females,and 506 offspring, females were more likely to produce EPY whenpaired to genetically similar males, but they did not appearto be influenced by the size, age, mass, individual heterozygosity,and genetic diversity of their social mates. In paired comparisons,females were almost twice as likely to decrease their geneticsimilarity to males when producing EPY as they were to increaseit. Nonetheless, females did not select especially dissimilarmales when mating outside the pair-bond nor did they pair disassortativelywith respect to genetic similarity. Relative measures of malequality may influence mating patterns in birds, but only atsome points in a female's decision-making process.  相似文献   

15.
In many species, each female pairs with a single male for the purpose of rearing offspring, but may also engage in extra-pair copulations. Despite the prevalence of such promiscuity, whether and how multiple mating benefits females remains an open question. Multiple mating is typically thought to be favoured primarily through indirect benefits (i.e. heritable effects on the fitness of offspring). This prediction has been repeatedly tested in a variety of species, but the evidence has been equivocal, perhaps because such studies have focused on pre-reproductive survival rather than lifetime fitness of offspring. Here, we show that in a songbird, the dark-eyed junco (Junco hyemalis), both male and female offspring produced by extra-pair fertilizations have higher lifetime reproductive success than do offspring sired within the social pair. Furthermore, adult male offspring sired via extra-pair matings are more likely to sire extra-pair offspring (EPO) themselves, suggesting that fitness benefits to males accrue primarily through enhanced mating success. By contrast, female EPO benefited primarily through enhanced fecundity. Our results provide strong support for the hypothesis that the evolution of extra-pair mating by females is favoured by indirect benefits and shows that such benefits accrue much later in the offspring's life than previously documented.  相似文献   

16.
Extra-pair reproduction is widely hypothesized to allow females to avoid inbreeding with related socially paired males. Consequently, numerous field studies have tested the key predictions that extra-pair offspring are less inbred than females’ alternative within-pair offspring, and that the probability of extra-pair reproduction increases with a female's relatedness to her socially paired male. However, such studies rarely measure inbreeding or relatedness sufficiently precisely to detect subtle effects, or consider biases stemming from failure to observe inbred offspring that die during early development. Analyses of multigenerational song sparrow (Melospiza melodia) pedigree data showed that most females had opportunity to increase or decrease the coefficient of inbreeding of their offspring through extra-pair reproduction with neighboring males. In practice, observed extra-pair offspring had lower inbreeding coefficients than females’ within-pair offspring on average, while the probability of extra-pair reproduction increased substantially with the coefficient of kinship between a female and her socially paired male. However, simulations showed that such effects could simply reflect bias stemming from inbreeding depression in early offspring survival. The null hypothesis that extra-pair reproduction is random with respect to kinship therefore cannot be definitively rejected in song sparrows, and existing general evidence that females avoid inbreeding through extra-pair reproduction requires reevaluation given such biases.  相似文献   

17.
Mate choice is one of the most important evolutionary mechanisms. Females can improve their fitness by selectively mating with certain males. We studied possible genetic benefits in the obligate pair-living fat-tailed dwarf lemur (Cheirogaleus medius) which maintains life-long pair bonds but has an extremely high rate of extra-pair paternity. Possible mechanisms of female mate choice were investigated by analyzing overall genetic variability (neutral microsatellite marker) as well as a marker of adaptive significance (major histocompatibility complex, MHC-DRB exon 2). As in human medical studies, MHC-alleles were grouped to MHC-supertypes based on similarities in their functional important antigen binding sites. The study indicated that females preferred males both as social and as genetic fathers for their offspring having a higher number of MHC-alleles and MHC-supertypes, a lower overlap with female’s MHC-supertypes as well as a higher genome wide heterozygosity than randomly assigned males. Mutual relatedness had no influence on mate choice. Females engaged in extra-pair mating shared a significant higher number of MHC-supertypes with their social partner than faithful females. As no genetic differences between extra-pair young (EPY) and intra-pair young (IPY) were found, females might engage in extra-pair mating to ‘correct’ for genetic incompatibility. Thus, we found evidence that mate choice is predicted in the first place by the ‘good-genes-as-heterozygosity hypothesis’ whereas the occurrence of extra-pair matings supports the ‘dissassortative mating hypothesis’. To the best of our knowledge this study represents the first investigation of the potential roles of MHC-genes and overall genetic diversity in mate choice and extra-pair partner selection in a natural, free-living population of non-human primates.  相似文献   

18.
Molecular genetic studies have suggested that apparently nonbreeding males ('floaters') may account for a significant proportion of extra-pair paternity (EPP) in avian populations. Attempts to determine the influence of breeding density on EPP are therefore confounded by the presence of a subpopulation of floaters whose numbers are difficult to estimate. To study EPP in a tree swallow (Tachycineta bicolor) population with few floaters, we chose a nestbox grid on an island with an excess of available breeding sites and very few floaters. We obtained DNA samples from 13 complete families and performed DNA profiling on them using four microsatellite loci. For comparison, we also obtained a sample of 58 extra-pair young (EPY) from a mainland population typed at five microsatellite loci. Paternity assignments among resident males in both populations were made using the microsatellite profiles and a likelihood-based statistical method. Of the 67 island nestlings typed, we found 37 (55%) nestlings from 11 (85%) different nests that were EPY. The proportion of nestlings that were EPY and the proportion of broods containing EPY did not differ significantly between island and mainland populations studied previously. There was no significant difference between island and mainland populations in the proportion of extra-pair paternities assigned among neighbouring resident males. Male breeding density does not appear to affect the ability of female tree swallows to obtain extra-pair fertilizations, at least over the range of densities studied so far. The rate of EPP has remained remarkably consistent over many years, studies and populations implying an important role of active female choice in determining EPP.  相似文献   

19.
Whether female birds choose extra-pair mating partners to obtain genetic fitness benefits is intensely debated. The most straightforward and crucial test of 'good genes' models of female extra-pair mating is the comparison of naturally 'cross-fostered' maternal half-siblings sharing the same rearing environment as any systematic differences in performance between the two categories of offspring phenotype can be attributed to differential paternal genetic contribution. We analysed local recruitment and first-year reproductive performance of maternal half-siblings in the coal tit (Parus ater), a passerine bird with high levels of extra-pair paternity. We provide a highly comprehensive measure of the long-term fitness consequences of female extra-pair matings based on a large sample of 736 within-pair offspring (WPO) and 368 extra-pair offspring (EPO) from 91 first and 55 second broods, from which 132 breeders recruited into the study population. In contrast to predictions derived from 'good genes' models, we found no differences in local recruitment and seven parameters of first-year reproductive performance when comparing WPO and EPO. These results question the universal validity of findings in other bird species supporting 'good genes' models, particularly as they are based on the best approximation to female fitness obtained so far.  相似文献   

20.
The existence and nature of indirect genetic benefits to mate choice remain contentious. Major histocompatibility complex (MHC) genes, which play a vital role in determining pathogen resistance in vertebrates, may be the link between mate choice and the genetic inheritance of vigour in offspring. Studies have shown that MHC-dependent mate choice can occur in mammal and fish species, but little work has focused on the role of the MHC in birds. We tested for MHC-dependent mating patterns in the Seychelles warbler (Acrocephalus sechellensis). There was no influence of MHC class I exon 3 variation on the choice of social mate. However, females were more likely to obtain extra-pair paternity (EPP) when their social mate had low MHC diversity, and the MHC diversity of the extra-pair male was significantly higher than that of the cuckolded male. There was no evidence that females were mating disassortatively, or that they preferred males with an intermediate number of MHC bands. Overall, the results are consistent with the 'good genes' rather than the 'genetic compatibility' hypothesis. As female choice will result in offspring of higher MHC diversity, MHC-dependent EPP may provide indirect benefits in the Seychelles warbler if survival is positively linked to MHC diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号