首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Genetic redundancy means that two genes can perform the same function. Using a comprehensive phylogenetic analysis, we show here in both Saccharomyces cerevisiae and Caenorhabditis elegans that genetic redundancy is not just a transient consequence of gene duplication, but is often an evolutionary stable state. In multiple examples, genes have retained redundant functions since the divergence of the animal, plant and fungi kingdoms over a billion years ago. The stable conservation of genetic redundancy contrasts with the more rapid evolution of genetic interactions between unrelated genes and can be explained by theoretical models including a 'piggyback' mechanism in which overlapping redundant functions are co-selected with nonredundant ones.  相似文献   

2.
E. A. Bucher  I. Greenwald 《Genetics》1991,128(2):281-292
We have devised a simple genetic mosaic screen, which circumvents the difficulties posed by phenotypic analysis of early lethal mutants, to analyze essential zygotic genes in Caenorhabditis elegans. The screen attempts to distinguish genes involved in cell type and/or lineage specific processes such as determination, differentiation or morphogenesis from genes involved in general processes such as intermediary metabolism by using the pattern of gene function to classify genes: genes required in one or a subset of early blastomeres may have specific functions, whereas genes required in all early blastomeres may have general functions. We found that 12 of 17 genes examined function in specific early blastomeres, suggesting that many zygotic genes contribute to specific early processes. We discuss the advantages and limitations of this screen, which is applicable to other regions of the C. elegans genome.  相似文献   

3.
4.
Programmed cell death, or apoptosis, is a genetically controlled process of cell suicide that is a common fate during an animal's life. In metazoans, apoptotic cells are rapidly removed from the body through the process of phagocytosis. Genetic analyses probing the mechanisms controlling the engulfment of apoptotic cells were pioneered in the nematode Caenorhabditis elegans. So far, at least seven genes have been identified that are required for the recognition and engulfment of apoptotic cells and have been shown to function in two partially redundant signaling pathways. Molecular characterization of their gene products has lead to the finding that similar genes act to control the same processes in other organisms, including mammals. In this paper, we review these exciting findings in C. elegans and discuss their implications in understanding the clearance of apoptotic cells in mammals.  相似文献   

5.
Piekny AJ  Wissmann A  Mains PE 《Genetics》2000,156(4):1671-1689
let-502 rho-binding kinase and mel-11 myosin phosphatase regulate Caenorhabditis elegans embryonic morphogenesis. Genetic analysis presented here establishes the following modes of let-502 action: (i) loss of only maternal let-502 results in abnormal early cleavages, (ii) loss of both zygotic and maternal let-502 causes elongation defects, and (iii) loss of only zygotic let-502 results in sterility. The morphogenetic function of let-502 and mel-11 is apparently redundant with another pathway since elimination of these two genes resulted in progeny that underwent near-normal elongation. Triple mutant analysis indicated that unc-73 (Rho/Rac guanine exchange factor) and mlc-4 (myosin light chain) act in parallel to or downstream of let-502/mel-11. In contrast mig-2 (Rho/Rac), daf-2 (insulin receptor), and age-1 (PI3 kinase) act within the let-502/mel-11 pathway. Mutations in the sex-determination gene fem-2, which encodes a PP2c phosphatase (unrelated to the MEL-11 phosphatase), enhanced mutations of let-502 and suppressed those of mel-11. fem-2's elongation function appears to be independent of its role in sexual identity since the sex-determination genes fem-1, fem-3, tra-1, and tra-3 had no effect on mel-11 or let-502. By itself, fem-2 affects morphogenesis with low penetrance. fem-2 blocked the near-normal elongation of let-502; mel-11 indicating that fem-2 acts in a parallel elongation pathway. The action of two redundant pathways likely ensures accurate elongation of the C. elegans embryo.  相似文献   

6.
The SR proteins constitute a family of nuclear phosphoproteins, which are required for constitutive splicing and also influence alternative splicing regulation. Initially, it was suggested that SR proteins were functionally redundant in constitutive splicing. However, differences have been observed in alternative splicing regulation, suggesting unique functions for individual SR proteins. Homology searches of the Caenorhabditis elegans genome identified seven genes encoding putative orthologues of the human factors SF2/ASF, SRp20, SC35, SRp40, SRp75 and p54, and also several SR-related genes. To address the issue of functional redundancy, we used dsRNA interference (RNAi) to inhibit specific SR protein function during C.elegans development. RNAi with CeSF2/ASF caused late embryonic lethality, suggesting that this gene has an essential function during C.elegans development. RNAi with other SR genes resulted in no obvious phenotype, which is indicative of gene redundancy. Simultaneous interference of two or more SR proteins in certain combinations caused lethality or other developmental defects. RNAi with CeSRPK, an SR protein kinase, resulted in early embryonic lethality, suggesting an essential role for SR protein phosphorylation during development.  相似文献   

7.
8.
9.
10.
SEC-23 is a component of coat protein complex II (COPII)-coated vesicles involved in the endoplasmic reticulum-to-Golgi transport pathway of eukaryotes. During postembryonic life, Caenorhabditis elegans is surrounded by a collagenous exoskeleton termed the cuticle. From a screen for mutants defective in cuticle secretion, we identified and characterized a sec-23 mutant of C. elegans. By sequence homology, C. elegans has only the single sec-23 gene described herein. In addition to the cuticle secretion defect, mutants fail to complete embryonic morphogenesis. However, they progress through the earlier stages of embryogenesis, including gastrulation, and achieve substantial morphogenesis before death. We demonstrated a maternal component of SEC-23 function sufficient for progression through the earlier stages of embryogenesis and explaining the limited phenotype of the zygotic mutant. By RNA-mediated interference, we investigated the effects of perturbing COPII function during various postembryonic stages. During larval stages, major defects in cuticle synthesis and molting were observed. In the adult hermaphrodite, reduction of SEC-23 function by RNA-mediated interference caused a rapid onset of sterility, with defects in oogenesis including early maturation of the germline nuclei, probably a result of the observed loss of the GLP-1 receptor from the membrane surfaces adjacent to the developing germline nuclei.  相似文献   

11.
BACKGROUND: Embryonic patterning mechanisms regulate the cytoskeletal machinery that drives morphogenesis, but there are few cases where links between patterning mechanisms and morphogenesis are well understood. We have used a combination of genetics, in vivo imaging, and cell manipulations to identify such links in C. elegans gastrulation. Gastrulation in C. elegans begins with the internalization of endodermal precursor cells in a process that depends on apical constriction of ingressing cells. RESULTS: We show that ingression of the endodermal precursor cells is regulated by pathways, including a Wnt-Frizzled signaling pathway, that specify endodermal cell fate. We find that Wnt signaling has a role in gastrulation in addition to its earlier roles in regulating endodermal cell fate and cell-cycle timing. In the absence of Wnt signaling, endodermal precursor cells polarize and enrich myosin II apically but fail to contract their apical surfaces. We show that a regulatory myosin light chain normally becomes phosphorylated on the apical side of ingressing cells at a conserved site that can lead to myosin-filament formation and contraction of actomyosin networks and that this phosphorylation depends on Wnt signaling. CONCLUSIONS: We conclude that Wnt signaling regulates C. elegans gastrulation through regulatory myosin light-chain phosphorylation, which results in the contraction of the apical surface of ingressing cells. These findings forge new links between cell-fate specification and morphogenesis, and they represent a novel mechanism by which Wnt signaling can regulate morphogenesis.  相似文献   

12.
Dominant gain-of-function mutations can give unique insights into the study of gene function. In addition, gain-of-function mutations, unlike loss-of-function alleles, are not biased against the identification of genetically redundant loci. To identify novel genetic functions active during Caenorhabditis elegans embryogenesis, we have collected a set of dominant temperature-sensitive maternal-effect embryonic lethal mutations. In a previous screen, we isolated eight such mutations, distributed among six genes. In the present study, we describe eight new dominant mutations that identify only three additional genes, yielding a total of 16 dominant mutations found in nine genes. Therefore, it appears that a limited number of C. elegans genes mutate to this phenotype at appreciable frequencies. Five of the genes that we identified by dominant mutations have loss-of-function alleles. Two of these genes may lack loss-of-function phenotypes, indicating that they are nonessential and so may represent redundant loci. Loss-of-function mutations of three other genes are associated with recessive lethality, indicating nonredundancy.  相似文献   

13.
The retinoblastoma gene product has been implicated in the regulation of multiple cellular and developmental processes, including a well-defined role in the control of cell cycle progression. The Caenorhabditis elegans retinoblastoma protein homolog, LIN-35, is also a key regulator of cell cycle entry and, as shown by studies of synthetic multivulval genes, plays an important role in the determination of vulval cell fates. We demonstrate an additional and unexpected function for lin-35 in organ morphogenesis. Using a genetic approach to isolate lin-35 synthetic-lethal mutations, we have identified redundant roles for lin-35 and ubc-18, a gene that encodes an E2 ubiquitin-conjugating enzyme closely related to human UBCH7. lin-35 and ubc-18 cooperate to control one or more steps during pharyngeal morphogenesis. Based on genetic and phenotypic analyses, this role for lin-35 in pharyngeal morphogenesis appears to be distinct from its cell cycle-related functions. lin-35 and ubc-18 may act in concert to regulate the levels of one or more critical targets during C. elegans development.  相似文献   

14.
We have identified and cloned the Caenorhabditis elegans dpy-2 and dpy-10 genes and determined that they encode collagens. Genetic data suggested that these genes are important in morphogenesis and possibly other developmental events. These data include the morphologic phenotypes exhibited by mutants, unusual genetic interactions with the sqt-1 collagen gene, and suppression of mutations in the glp-1 and mup-1 genes. The proximity of the dpy-2 and dpy-10 genes (3.5 kilobase) and the structural similarity of their encoded proteins (41% amino acid identity) indicate that dpy-2 and dpy-10 are the result of a gene duplication event. The genes do not, however, appear to be functionally redundant, because a dpy-10 null mutant is not rescued by the dpy-2 gene. In addition, full complementation between dpy-2 and dpy-10 can be demonstrated with all recessive alleles tested in trans. Sequence analysis of several mutant alleles of each gene was performed to determine the nature of the molecular defects that can cause the morphologic phenotypes. Glycine substitutions within the Gly-X-Y portion of the collagens can result in dumpy (Dpy), dumpy, left roller (DLRol), or temperature-sensitive DLRol phenotypes. dpy-10(cn64), a dominant temperature-sensitive DLRol allele, creates an Arg-to-Cys substitution in the amino non-Gly-X-Y portion of the protein. Three dpy-10 alleles contain Tc1 insertions in the coding region of the gene. dpy-10(cg36) (DRLol) creates a nonsense codon near the end of the Gly-X-Y region. The nature of this mutation, combined with genetic data, indicates that DLRol is the null phenotype of dpy-10. The Dpy phenotype results from reduced function of the dpy-10 collagen gene. Our results indicate that a variety of molecular defects in these collagens can result in severe morphologic changes in C. elegans.  相似文献   

15.
16.
Natural selection acts at the level of function, not at the logistical level of how organisms achieve a particular function. Consequently, significant DNA sequence and regulatory differences can achieve the same function, such as a particular gene expression pattern. To investigate how regulatory features underlying a conserved function can evolve, we compared the regulation of a conserved gene expression pattern in the related species Caenorhabditis elegans and C. briggsae. We find that both C. elegans and C. briggsae express the ovo-related zinc finger gene lin-48 in the same pattern in hindgut cells. However, the regulation of this gene by the Pax-2/5/8 protein EGL-38 differs in two important ways. First, specific differences in the regulatory sequences of lin-48 result in the presence of two redundant EGL-38 response elements in C. elegans, whereas the redundancy is absent in C. briggsae. Second, there is a single egl-38 gene in C. briggsae. In contrast, the gene is duplicated in C. elegans, with only one copy retaining the ability to regulate lin-48 in vivo. These results illustrate molecular changes that can occur despite maintenance of conserved gene function in different species.  相似文献   

17.
Receptor-like protein-tyrosine phosphatases (RPTPs) form a diverse family of cell surface molecules whose functions remain poorly understood. The LAR subfamily of RPTPs has been implicated in axon guidance and neural development. Here we report the molecular and genetic analysis of the C. elegans LAR subfamily member PTP-3. PTP-3 isoforms are expressed in many tissues in early embryogenesis, and later become localized to neuronal processes and to epithelial adherens junctions. Loss of function in ptp-3 causes low-penetrance defects in gastrulation and epidermal development similar to those of VAB-1 Eph receptor tyrosine kinase mutants. Loss of function in ptp-3 synergistically enhances phenotypes of mutations in the C. elegans Eph receptor VAB-1 and a subset of its ephrin ligands, but does not show specific interactions with several other RTKs or morphogenetic mutants. The genetic interaction of vab-1 and ptp-3 suggests that LAR-like RPTPs and Eph receptors have related and partly redundant functions in C. elegans morphogenesis.  相似文献   

18.
19.
20.
Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号