首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cathepsin V is a lysosomal cysteine peptidase highly expressed in thymus, testis and corneal epithelium. Eleven acridone alkaloids were isolated from Swinglea glutinosa (Bl.) Merr. (Rutaceae), with eight of them being identified as potent and reversible inhibitors of cathepsin V (IC(50) values ranging from 1.2 to 3.9 μM). Detailed mechanistic characterization of the effects of these compounds on the cathepsin V-catalyzed reaction showed clear competitive inhibition with respect to substrate, with dissociation constants (K(i)) in the low micromolar range (2, K(i)=1.2 μM; 6, K(i)=1.0 μM; 7, K(i)=0.2 μM; and 11, K(i)=1.7 μM). Molecular modeling studies provided important insight into the structural basis for binding affinity and enzyme inhibition. Experimental and computational approaches, including biological evaluation, mode of action assessment and modeling studies were successfully employed in the discovery of a small series of acridone alkaloid derivatives as competitive inhibitors of catV. The most potent inhibitor (7) has a K(i) value of 200 nM.  相似文献   

2.
We have synthesized and evaluated the biological properties of a compound of the type [η(6)-p-cymene)Ru(EtATSC)Cl]Cl (1) where EtATSC = 2-anthracen-9-ylmethylene-N-ethylhydrazinecarbothioamide, a thiosemicarbazone. The complex has been characterized by elemental analysis, spectroscopically (NMR, UV-Vis, and IR) and structurally by XRD. The in vitro anticancer activity of 1 has been evaluated against two human colon cancer cell lines. The IC(50) value for activity against HCT-116 was 224 ± 7 μM and 205 ± 5 μM against the Caco-2 cell line. The proficiency of 1 as an antibacterial agent was also evaluated against six bacterial strains. The minimum inhibitory concentration for Bacillus cereus was determined to be 5 μM and for Enterococcus faecalis it was 20 μM. At the maximum concentration tested the complex showed no activity against the Gram-negative strains. The complex binds strongly to human serum albumin with a binding constant of 1.37 ± 0.02 M(-1) at 308 K on a single binding site. It is also a strong binder to DNA with an apparent binding constant of 2.82 × 10(5) M(-1) at 308 K. 1 shows very good activity as a catalytic inhibitor of human topoisomerase II at concentrations as low as 20 μM.  相似文献   

3.
Extracellular stimulation of the B cell receptor or mast cell FcεRI receptor activates a cascade of protein kinases, ultimately leading to antigenic or inflammation immune responses, respectively. Syk is a soluble kinase responsible for transmission of the receptor activation signal from the membrane to cytosolic targets. Control of Syk function is, therefore, critical to the human antigenic and inflammation immune response, and an inhibitor of Syk could provide therapy for autoimmune or inflammation diseases. We report here a novel allosteric Syk inhibitor, X1, that is noncompetitive against ATP (K(i) 4 ± 1 μM) and substrate peptide (K(i) 5 ± 1 μM), and competitive against activation of Syk by its upstream regulatory kinase LynB (K(i) 4 ± 1 μM). The inhibition mechanism was interrogated using a combination of structural, biophysical, and kinetic methods, which suggest the compound inhibits Syk by reinforcing the natural regulatory interactions between the SH2 and kinase domains. This novel mode of inhibition provides a new opportunity to improve the selectivity profile of Syk inhibitors for the development of safer drug candidates.  相似文献   

4.
Studies on carbonic anhydrase (CA, EC 4.2.1.1) inhibitors have increased due to several therapeutic applications while there are few investigations on activators. Here we investigated CA inhibitory and activatory capacities of a series of dopaminergic compounds on human carbonic anhydrase (hCA) isozymes I, II, and VI. 2-Amino-1,2,3,4-tetrahydronaphthalene-6,7-diol hydrobromide and 2-amino-1,2,3,4-tetrahydronaphthalene-5,6-diol hydrobromide were found to show effective inhibitory action on hCA I and II whereas 2-amino-5,6-dibromoindan hydrobromide and 2-amino-5-bromoindan hydrobromide exhibited only moderate inhibition against both isoforms, being more effective inhibitors of hCA VI. K(i) values of the molecules 3-6 were in the range of 41.12-363 μM against hCA I, of 0.381-470 μM against hCA II and of 0.578-1.152 μM against hCA VI, respectively. Compound 7 behaved as a CA activator with K(A) values of 27.3 μM against hCA I, of 18.4 μM against hCA II and of 8.73 μM against hCA VI, respectively.  相似文献   

5.
Human kallikrein 5 and 7 (KLK5 and KLK7) are trypsin-like and chymotrypsin-like serine proteases, respectively, and promising targets for the treatment of skin desquamation, inflammation and cancer. In an effort to develop new inhibitors for these enzymes, we carried out enzymatic inhibition assays and docking studies with three isocoumarin compounds. Some promising inhibitors were uncovered, with vioxanthin and 8,8'-paepalantine being the most potent competitive inhibitors of KLK5 (K(i)=22.9 μM) and KLK7 (K(i)=12.2 μM), respectively. Our docking studies showed a good correlation with the experimental results, and revealed a distinct binding mode for the inhibitors at the binding sites of KLK5 and KLK7. In addition, the docking results suggested that the formation of hydrogen bonds at the oxyanion hole is essential for a good inhibitor.  相似文献   

6.
PyrH is a member of the UMP kinase family that catalyses the conversion of UMP to UDP, an essential step in the pyrimidine metabolic pathway in a variety of bacteria including those causing community-acquired respiratory tract infections (RTIs). In this study, we have developed a luminescence-based kinase assay of PyrH and evaluated the inhibitory activity of PYRH-1 (sodium {3-[4-tert-butyl-3-(9H-xanthen-9-ylacetylamino)phenyl]-1-cyclohexylmethylpropoxycarbonyloxy}acetate). PYRH-1 inhibits PyrH derived from both Streptococcus pneumoniae and Haemophilus influenzae with IC(50) (concentration of inhibitor giving a 50% decrease in enzyme activity) values of 48 and 75?μM, respectively, whose inhibitory activity against S.?pneumoniae PyrH was far higher compared with that of UTP (IC(50) =?710?μM), an allosteric PyrH inhibitor. The molecular interaction analysis by surface plasmon resonance suggested that PYRH-1 directly interacts with S.?pneumoniae PyrH at one-to-one molar ratio. Finally, PYRH-1 was shown to have antimicrobial activity against several different bacteria causing RTIs, such as S.?pneumoniae, Staphylococcus aureus, H.?influenzae (acrA knockout strain), suggesting that PYRH-1 is a prototype chemical compound that can be harnessed as an antimicrobial drug with a novel mode of action by targeting bacterial PyrH.  相似文献   

7.
Hydroxy-3-methyl-glutaryl-CoA reductase (HMGR) is the rate-controlling enzyme of cholesterol synthesis, and owing to its biological and pharmacological relevance, researchers have investigated several compounds capable of modulating its activity with the hope of developing new hypocholesterolemic drugs. In particular, polyphenol-rich extracts were extensively tested for their cholesterol-lowering effect as alternatives, or adjuvants, to the conventional statin therapies, but a full understanding of the mechanism of their action has yet to be reached. Our work reports on a detailed kinetic and equilibrium study on the modulation of HMGR by the most-abundant catechin in green tea, epigallocatechin-3-gallate (EGCG). Using a concerted approach involving spectrophotometric, optical biosensor, and chromatographic analyses, molecular docking, and site-directed mutagenesis on the cofactor site of HMGR, we have demonstrated that EGCG potently inhibits the in vitro activity of HMGR (K(i) in the nanomolar range) by competitively binding to the cofactor site of the reductase. Finally, we evaluated the effect of combined EGCG-statin administration.  相似文献   

8.
Mitogen/extracellular signal-regulated kinase (MEK) and phosphoinositide 3-kinase (PI3Kα) are considered to be promising targets for the development of anticancer therapeutics. We report the first example of the successful application of structure-based virtual screening to identify novel inhibitors of MEK with IC(50) values ranging from 1 to 25 μM. One of the four newly identified MEK inhibitors was found to be also a potent inhibitor of PI3Kα with submicromolar inhibitory activity (IC(50)=0.3 μM). Because this dual inhibitor was screened for having desirable physicochemical properties as a drug candidate as well as the high inhibitory activities against MEK and PI3Kα, it warrants further development through structure-activity relationship (SAR) studies to optimize the inhibitory and anticancer activities. Structural features relevant to the stabilization of the dual inhibitor in the ATP-binding sites of MEK1 and PI3Kα are addressed in detail.  相似文献   

9.
Ma H  Zhong L  Inesi G  Fortea I  Soler F  Fernandez-Belda F 《Biochemistry》1999,38(47):15522-15527
Chimeric exchanges and mutations were produced in the Ca(2+)-ATPase (SERCA) to match (in the majority of cases) corresponding sequences of the Na(+),K(+)-ATPase. The effects of these mutations on the concentration dependence of the specific Ca(2+)-ATPase inhibition by thapsigargin (TG) and cyclopiazonic acid (CPA) were then determined. Extensive chimeric mutations on the large cytosolic loop, on the S4 stalk segment, and on the M3 transmembrane segments produced little or no modification of the Ca(2+)-ATPase sensitivity to either inhibitor. On the other hand, the presence of a six amino acid Na(+), K(+)-ATPase sequence within the S3 stalk segment of the Ca(2+)-ATPase raised 60-fold the apparent K(i) for TG and 250-fold the apparent K(i) for CPA. More limited mutations within the same S3 segment, however, affected differently the concentration dependence of the Ca(2+)-ATPase inhibition by TG or CPA. Specifically, single mutation of Phe256 to Val increased 20-fold the apparent K(i) for TG, while having very little effect on the apparent K(i) for CPA. These findings indicate significant overlap of the TG and CPA binding domains within the S3 stalk segment of the Ca(2+)-ATPase, where the contribution of each protein residue is dependent on the structures of the two inhibitors. Saturating concentrations of either or both TG and CPA produce an identical reduction of the affinity of the ATPase for ATP, suggesting that only one inhibitor can bind at any time due to significant overlap of their binding domains. It is suggested that perturbations produced by binding of either inhibitor within the stalk segment interfere with the long-range functional linkage between ATP utilization in the ATPase cytosolic region and Ca(2+) binding in the membrane-bound region.  相似文献   

10.
A series of sulfonyl hydrazones derived from 3-formylchromone was synthesized and discovered to be effective, non-selective inhibitors of monoamine oxidases (MAO-A and MAO-B). The compounds are easily (synthetically) accessible in high yields, by simple condensation of 4-methylbenzenesulfonohydrazide with different (un)substituted 3-formylchromones. All compounds had IC50 values in lower micro-molar range (IC50 = 0.33–7.14 μM for MAO-A, and 1.12–3.56 μM for MAO-B). The most active MAO-B inhibitor was N′-[(E)-(6-fluoro-4-oxo-4H-chromen-3-yl)methylidene]-4-methylbenzenesulfonohydrazide (3e) with IC50 value of 1.12 ± 0.02 μM, and N′-[(E)-(6-chloro-4-oxo-4H-chromen-3-yl)methylidene]-4-methylbenzenesulfonohydrazide (3f) was the most active MAO-A inhibitor with IC50 value of 0.33 ± 0.01 μM. From enzyme kinetic studies, the mode of inhibition against MAO-B was found to be competitive, whereas against MAO-A, it was found to be non-competitive. Molecular docking studies indicated a new binding pocket for non-competitive MAO-A inhibitors. The activity of these compounds is optimally combined with highly favorable ADME profile with predicted good oral bioavailability.  相似文献   

11.
Previous work from this laboratory showed the ability of neurotensin to inhibit synaptosomal membrane Na(+), K(+)-ATPase activity, the effect being blocked by SR 48692, a non-peptidic antagonist for high affinity neurotensin receptor (NTS1) [López Ordieres and Rodríguez de Lores Arnaiz 2000; 2001]. To further study neurotensin interaction with Na(+), K(+)-ATPase, peptide effect on high affinity [(3)H]-ouabain binding was studied in cerebral cortex membranes. It was observed that neurotensin modified binding in a dose-dependent manner, leading to 80% decrease with 1 × 10(-4)M concentration. On the other hand, the single addition of 1 × 10(-6)M, 1 × 10(-5)M and 1 × 10(-4)M SR 48692 (Sanofi-Aventis, U.S., Inc.) decreased [(3)H]-ouabain binding (in %) to 87 ± 16; 74 ± 16 and 34 ± 17, respectively. Simultaneous addition of neurotensin and SR 48692 led to additive or synergic effects. Partial NTS2 agonist levocabastine inhibited [(3)H]-ouabain binding likewise. Saturation assays followed by Scatchard analyses showed that neurotensin increased K(d) value whereas failed to modify B(max) value, indicating a competitive type interaction of the peptide at Na(+), K(+)-ATPase ouabain site. At variance, SR 48692 decreased B(max) value whereas it did not modify K(d) value. [(3)H]-ouabain binding was also studied in cerebral cortex membranes obtained from rats injected i. p. 30 min earlier with 100 μg and 250 μg/kg SR 48692. It was observed that the 250 μg/kg SR 48692 dose led to 19% decrease in basal [(3)H]-ouabain binding. After SR 48692 treatments, addition of 1 × 10(-6)M led to additive or synergic effect. Results suggested that [(3)H]-ouabain binding inhibition by neurotensin hardly involves NTS1 receptor.  相似文献   

12.
Streptococcus pneumoniae 5'-methylthioadenosine/S-adenosylhomocysteine hydrolase (MTAN) catalyzes the hydrolytic deadenylation of its substrates to form adenine and 5-methylthioribose or S-ribosylhomocysteine (SRH). MTAN is not found in mammals but is involved in bacterial quorum sensing. MTAN gene disruption affects the growth and pathogenicity of bacteria, making it a target for antibiotic design. Kinetic isotope effects and computational studies have established a dissociative S(N)1 transition state for Escherichia coli MTAN, and transition state analogues resembling the transition state are powerful inhibitors of the enzyme [Singh, V., Lee, J. L., Nú?ez, S., Howell, P. L., and Schramm, V. L. (2005) Biochemistry 44, 11647-11659]. The sequence of MTAN from S. pneumoniae is 40% identical to that of E. coli MTAN, but S. pneumoniae MTAN exhibits remarkably distinct kinetic and inhibitory properties. 5'-Methylthio-Immucillin-A (MT-ImmA) is a transition state analogue resembling an early S(N)1 transition state. It is a weak inhibitor of S. pneumoniae MTAN with a K(i) of 1.0 microM. The X-ray structure of S. pneumoniae MTAN with MT-ImmA indicates a dimer with the methylthio group in a flexible hydrophobic pocket. Replacing the methyl group with phenyl (PhT-ImmA), tolyl (p-TolT-ImmA), or ethyl (EtT-ImmA) groups increases the affinity to give K(i) values of 335, 60, and 40 nM, respectively. DADMe-Immucillins are geometric and electrostatic mimics of a fully dissociated transition state and bind more tightly than Immucillins. MT-DADMe-Immucillin-A inhibits with a K(i) value of 24 nM, and replacing the 5'-methyl group with p-Cl-phenyl (p-Cl-PhT-DADMe-ImmA) gave a K(i) value of 0.36 nM. The inhibitory potential of DADMe-Immucillins relative to the Immucillins supports a fully dissociated transition state structure for S. pneumoniae MTAN. Comparison of active site contacts in the X-ray crystal structures of E. coli and S. pneumoniae MTAN with MT-ImmA would predict equal binding, yet most analogues bind 10(3)-10(4)-fold more tightly to the E. coli enzyme. Catalytic site efficiency is primarily responsible for this difference since k(cat)/K(m) for S. pneumoniae MTAN is decreased 845-fold relative to that of E. coli MTAN.  相似文献   

13.
Du W  Liu WS  Payne DJ  Doyle ML 《Biochemistry》2000,39(33):10140-10146
The inhibitor binding synergy mechanism of the bi-substrate enzyme Streptococcus pneumoniae 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) has been investigated with a linkage thermodynamics strategy, involving direct binding experiments of one ligand conducted over a range of concentration of the other. The results demonstrate that binding of the inhibitor glyphosate (GLP) is highly synergistic with both a natural substrate shikimate-3-phosphate (S3P) and activating monovalent cations. The synergy between GLP and S3P binding was determined to be 1600-fold and is in qualitative agreement with previous work on Escherichia coli EPSPS. The binding molar ratios of S3P and GLP were measured as 1.0 and 0.7 per EPSPS, respectively. Monovalent cations that have been shown previously to stimulate S. pneumoniae EPSPS catalytic activity and its inhibition by GLP were found here to exhibit a similar rank-order with respect to their measured GLP binding synergies (ranging from 0 to > or =3000-fold increase in GLP affinity). The cation specificity and the sub-millimolar concentrations where these effects occur strongly suggest the presence of a specific cation binding site. Analytical ultracentrifugation data ruled out GLP-binding synergy mechanisms that derive from, or are influenced by, changes in oligomerization of S. pneumoniae EPSPS. Rather, the data are most consistent with an allosteric mechanism involving changes in tertiary structure. The results provide a quantitative framework for understanding the inhibitor binding synergies in S. pneumoniae EPSPS and implicate the presence of a specific cation binding regulatory site. The findings will help to guide rational design of novel antibiotics targeting bacterial EPSPS enzymes.  相似文献   

14.
Annonaceous acetogenins (ACGs), as one of the most powerful groups of mitochondrial complex I inhibitors, exhibit potent cytotoxic activity against a variety of human tumor cell lines. In this study, the antitumor activities of three main types of ACGs were investigated using S180 and HepS xenografts bearing mice simultaneously. The results revealed that select ACGs suppressed tumor growth in a dose-dependent fashion. Tested ACGs showed more selective antitumor activity against HepS. Furthermore, adjacent bis-THF ACGs were more active than mono-THF and nonadjacent bis-THF ACGs against HepS and S180; nonadjacent bis-THF ACGs were more active than mono-THF ACGs against S180, but mono-THF ACGs were more potent than nonadjacent bis-THF ACGs against HepS.  相似文献   

15.
Cofactor-type inhibitors of inosine monophosphate dehydrogenase (IMPDH) that target the nicotinamide adenine dinucleotide (NAD) binding domain of the enzyme are modular in nature. They interact with the three sub-sites of the cofactor binding domain; the nicotinamide monophosphate (NMN) binding sub-site (N sub-site), the adenosine monophosphate (AMP) binding sub-site (A sub-site), and the pyrophosphate binding sub-site (P sub-site or P-groove). Mycophenolic acid (MPA) shows high affinity to the N sub-site of human IMPDH mimicking NMN binding. We found that the attachment of adenosine to the MPA through variety of linkers afforded numerous mycophenolic adenine dinucleotide (MAD) analogues that inhibit the two isoforms of the human enzyme in low nanomolar to low micromolar range. An analogue 4, in which 2-ethyladenosine is attached to the mycophenolic alcohol moiety through the difluoromethylenebis(phosphonate) linker, was found to be a potent inhibitor of hIMPDH1 (K(i)=5 nM), and one of the most potent, sub-micromolar inhibitor of leukemia K562 cells proliferation (IC(50)=0.45 μM). Compound 4 was as potent as Gleevec (IC(50)=0.56 μM) heralded as a 'magic bullet' against chronic myelogenous leukemia (CML). MAD analogues 7 and 8 containing an extended ethylenebis(phosphonate) linkage showed low nanomolar inhibition of IMPDH and low micromolar inhibition of K562 cells proliferation. Some novel MAD analogues described herein containing linkers of different length and geometry were found to inhibit IMPDH with K(i)'s lower than 100 nM. Thus, such linkers can be used for connection of other molecular fragments with high affinity to the N- and A-sub-site of IMPDH.  相似文献   

16.
Human Na(+)-D-glucose cotransporter (hSGLT) inhibitors constitute the newest class of diabetes drugs, blocking up to 50% of renal glucose reabsorption in vivo. These drugs have potential for widespread use in the diabetes epidemic, but how they work at a molecular level is poorly understood. Here, we use electrophysiological methods to assess how they block Na(+)-D-glucose cotransporter SGLT1 and SGLT2 expressed in human embryonic kidney 293T (HEK-293T) cells and compared them to the classic SGLT inhibitor phlorizin. Dapagliflozin [(1S)-1,5,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-D-glucitol], two structural analogs, and the aglycones of phlorizin and dapagliflozin were investigated in detail. Dapagliflozin and fluoro-dapagliflozin [(1S)-1,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-4-F-4-deoxy-D-glucitol] blocked glucose transport and glucose-coupled currents with ≈100-fold specificity for hSGLT2 (K(i) = 6 nM) over hSGLT1 (K(i) = 400 nM). As galactose is a poor substrate for SGLT2, it was surprising that galacto-dapagliflozin [(1S)-1,5-anhydro-1-C-{4-chloro-3-[(4-ethoxyphenyl)methyl]phenyl}-D-galactitol] was a selective inhibitor of hSGLT2, but was less potent than dapagliflozin for both transporters (hSGLT2 K(i) = 25 nM, hSGLT1 K(i) = 25,000 nM). Phlorizin and galacto-dapagliflozin rapidly dissociated from SGLT2 [half-time off rate (t(1/2,Off)) ≈ 20-30 s], while dapagliflozin and fluoro-dapagliflozin dissociated from hSGLT2 at a rate 10-fold slower (t(1/2,Off) ≥ 180 s). Phlorizin was unable to exchange with dapagliflozin bound to hSGLT2. In contrast, dapagliflozin, fluoro-dapagliflozin, and galacto-dapagliflozin dissociated quickly from hSGLT1 (t(1/2,Off) = 1-2 s), and phlorizin readily exchanged with dapagliflozin bound to hSGLT1. The aglycones of phlorizin and dapagliflozin were poor inhibitors of both hSGLT2 and hSGLT1 with K(i) values > 100 μM. These results show that inhibitor binding to SGLTs is composed of two synergistic forces: sugar binding to the glucose site, which is not rigid, and so different sugars will change the orientation of the aglycone in the access vestibule; and the binding of the aglycone affects the binding affinity of the entire inhibitor. Therefore, the pharmacophore must include variations in both the structure of the sugar and the aglycone.  相似文献   

17.
18.
Carbonic anhydrase inhibitors (CAIs) are a class of pharmaceuticals used as antiglaucoma agents, diuretics and antiepileptics. Thus, discovery of novel CAIs has become of great importance in the recent years. In the current study, in vitro and in vivo inhibition effects of benzodiazepine drugs, diazepam and midazolam, on human erythrocytes carbonic anhydrase I and II isozymes were investigated. After purification of the isoenzymes, in vitro inhibition assays were performed and K(i) values were determined to be of 141.5 μM and 40.7 μM for hCA I and of 5.11 μM and 0.58 μM against hCA II by the esterase activity assay, respectively. The drugs showed strong inhibitory effects on hCA II, in the same range as the clinically used sulphonamide acetazolamide. For in vivo studies, five adult male New Zealand White rabbits (3-4.2 kg) were selected for intravenous administrations of the drugs (2 mg/kg and 0.2 mg/kg body weight, respectively). The enzyme was significantly inhibited by 2 mg/kg diazepam (p < 0.05), and 0.2 mg/kg midazolam (p < 0.05) for up to 30 min following intravenous administration.  相似文献   

19.
The intracellular PI3K-AKT-mTOR pathway is involved in regulation of numerous important cell processes including cell growth, differentiation, and metabolism. The PI3Kα isoform has received particular attention as a novel molecular target in gene therapy, since this isoform plays critical roles in tumor progression and tumor blood flow and angiogenesis. However, the role of PI3Kα and other class I isoforms, i.e. PI3Kβ, γ, δ, in the regulation of vascular tone and regional blood flow are largely unknown. We used novel isoform-specific PI3K inhibitors and mice deficient in both PI3Kγ and PI3Kδ (Pik3cg–/–/Pik3cd–/–) to define the putative contribution of PI3K isoform(s) to arterial vasoconstriction. Wire myography was used to measure isometric contractions of isolated murine mesenteric arterial rings. Phenylephrine-dependent contractions were inhibited by the pan PI3K inhibitors wortmannin (100 nM) and LY294002 (10 μM). These vasoconstrictions were also inhibited by the PI3Kα isoform inhibitors A66 (10 μM) and PI-103 (1 μM), but not by the PI3Kβ isoform inhibitor TGX 221 (100 nM). Pik3cg–/–/Pik3cd–/–-arteries showed normal vasoconstriction. We conclude that PI3Kα is an important downstream element in vasoconstrictor GPCR signaling, which contributes to arterial vasocontraction via α1-adrenergic receptors. Our results highlight a regulatory role of PI3Kα in the cardiovascular system, which widens the spectrum of gene therapy approaches targeting PI3Kα in cancer cells and tumor angiogenesis and regional blood flow.  相似文献   

20.
Indandiones were identified as a novel class of small molecule inhibitors of hepatitis C virus NS3 serine protease from high throughput screening. We further studied the structure activity relationships and the mechanisms of inhibition for this class of compounds. Our studies revealed two similar, yet different, mechanisms accounting for the apparent indandione inhibition of HCV NS3 protease. In one case, the apparent inhibition results from the chemical breakdown of the parent compound and the subsequent redox chemistry of the compound. Oxidation of the cysteine containing substrate A to a disulfide-linked dimer converts this substrate to a potent, slow-binding inhibitor with a K(i) value of 170 nM. The second class of indandiones appears to react directly with the substrate to form an S-phenyl disulfide adduct with the P1 cysteine. This modification converts the substrate to a slow-binding inhibitor with a K(i) value of 110 nM, a k(on) = 2370 M(-1) s(-1), and k(off) = 2.5 x 10(-4) s(-1). A stable analogue of this latter compound was synthesized that contained a CH(2)-S linkage instead of the S-S linkage. The CH(2)-S compound showed no inhibition at concentrations as high as 40 microM, which suggests an important role for the S-S linkage in the inhibitory mechanism. Cysteine 159, which lies near the active site of the HCV protease, was mutated to serine. The C159S mutant displayed wild-type catalytic activity and susceptibility to inhibition by the S-S linked inhibitor. This result argues against a mechanism involving disulfide exchange between the inhibitor and the sulfhydryl group of C159. The mechanism of inhibition for this S-S linked substrate based inhibitor is likely due to oxidation of cysteines involved in chelation of the structural zinc atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号