首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用在多种应激条件下酵母的基因表达谱数据 ,分别计算互作蛋白质及复合物亚基编码基因的表达相关性。结果发现 ,相对于随机对照组 ,互作蛋白质的编码基因与蛋白质复合物的编码基因表达相关性均显著 (P <0 .0 1) ,即互作蛋白质及复合物亚基有共表达的倾向。通过比较 ,进一步发现蛋白质复合物亚基的基因表达相关性显著高于互作蛋白质的基因表达相关性 (P <0 .0 1) ,这与复合物亚基之间功能联系强于定义不甚确切的互作蛋白之间功能联系现象吻合。  相似文献   

2.
There is a renewed interest in the structure and functioning of the mitochondrial respiratory chain with the realization that a number of genetic disorders result from defects in mitochondrial electron transfer. These so-called mitochondrial myopathies include diseases of muscle, heart, and brain. The respiratory chain can be fractionated into four large multipeptide complexes, an NADH ubiquinone reductase (complex I), succinate ubiquinone reductase (complex II), ubiquinol oxidoreductase (complex III), and cytochromec oxidase (complex IV). Mitochondrial myopathies involving each of these complexes have been described. This review summarizes compositional and structural data on the respiratory chain proteins and describes the arrangement of these complexes in the mitochondrial inner membrane. This biochemical information is provided as a framework for the diagnosis and molecular characterization of mitochondrial diseases.  相似文献   

3.
4.
Quantitative or numerical metrics of protein function specificity made possible by the Gene Ontology are useful in that they enable development of distance or similarity measures between protein functions. Here we describe how to calculate four measures of function specificity for GO terms: 1) number of ancestor terms; 2) number of offspring terms; 3) proportion of terms; and 4) Information Content (IC). We discuss the relationship between the metrics and the strengths and weaknesses of each.  相似文献   

5.
A protein interaction network describes a set of physical associations that can occur between proteins. However, within any particular cell or tissue only a subset of proteins is expressed and so only a subset of interactions can occur. Integrating interaction and expression data, we analyze here this interplay between protein expression and physical interactions in humans. Proteins only expressed in restricted cell types, like recently evolved proteins, make few physical interactions. Most tissue‐specific proteins do, however, bind to universally expressed proteins, and so can function by recruiting or modifying core cellular processes. Conversely, most ‘housekeeping’ proteins that are expressed in all cells also make highly tissue‐specific protein interactions. These results suggest a model for the evolution of tissue‐specific biology, and show that most, and possibly all, ‘housekeeping’ proteins actually have important tissue‐specific molecular interactions.  相似文献   

6.
7.
We have demonstrated recently that the genes encoding the U3 small nuclear RNA (snRNA) in dicot plants are transcribed by RNA polymerase III (pol III), and not RNA polymerase II (pol II) as in all other organisms studied to date. The U3 gene was the first example of a gene transcribed by different polymerases in different organisms. Based on phylogenetic arguments we proposed that a polymerase specificity change of the U3 snRNA gene promoter occurred during plant evolution. To map such an event we are examining the U3 gene polymerase specificity in other plant species. We report here the characterization of a U3 gene from wheat, a monocot plant. This gene contains the conserved promoter elements, USE and TATA, in a pol III-specific spacing seen also in a wheat U6 snRNA gene characterized in this report. Both the U3 and the U6 genes possess typical pol III termination signals but lack the cis element, responsible for 3-end formation, found in all plant pol II-specific snRNA genes. In addition, expression of the U3 gene in transfected maize protoplasts is less sensitive to -amanitin than a pol II-transcribed U2 gene. Based on these data we conclude that the wheat U3 gene is transcribed by pol III. This observation suggests that the postulated RNA polymerase specificity switch of the U3 gene took place prior to the divergence of angiosperm plants into monocots and dicots.  相似文献   

8.
基于Hom in的基因共表达网络的比较分析,发现人类基因共表达网络和蛋白质相互作用数据之间存在一定的相关性。采用基因本体论对这两个网络重叠区域进行基因分类后发现,这些编码的蛋白质主要集中在对刺激物的应答途径之中。通过对该途径中的蛋白质相互作用网络作图,获得了两个独立的功能模块。通过对模块中的基因分类和关键基因分析得出两者分别对应于内外源刺激物的应答功能。本研究对于利用不断丰富的核酸公共数据信息挖掘蛋白质相互作用的研究具有积极的促进作用。  相似文献   

9.
The existence and expression of gene encoding the Ca2+-binding protein regucalcin in various species and tissues were investigated with Southern and Northern hybridization analyses using regucalcin cDNA (0.9 kb of open reading frame). Genomic Southern hybridization analysis demonstrated that regucalcin gene was widely conserved among higher animals including human, monkey, rat, mouse, dog, bovine, rabbit and chicken. The gene was not found in yeast. The Northern blot analysis of poly (A)+RNAs extracted from the liver of various species showed that regucalcin mRNA was predominantly expressed in rat and mouse, although the expression was also seen in human, bovine and chicken. Furthermore, the enzyme-linked immunoadsorbent assay (ELISA) with rabbit-anti-regucalcin IgG indicated that hepatic regucalcin concentration was most pronounced in rat as compared with that of guinea pig, mouse and chicken. These observations show that the gene expression of regucalcin and its protein synthesis is unique in the liver of rats, suggesting the existence of a specific mechanism in demonstrating regucalcin synthesis from gene.  相似文献   

10.
Evolutionary rates provide important information about the pattern and mechanism of evolution. Although the rate of gene sequence evolution has been well studied, the rate of gene expression evolution is poorly understood. In particular, it is unclear whether the gene expression level and tissue specificity influence the divergence of expression profiles between orthologous genes. Here we address this question using a microarray data set comprising the expression signals of 10,607 pairs of orthologous human and mouse genes from over 60 tissues per species. We show that the level of gene expression and the degree of tissue specificity are generally conserved between the human and mouse orthologs. The rate of gene expression profile change during evolution is negatively correlated with the level of gene expression, measured by either the average or the highest level among all tissues examined. This is analogous to the observation that the rate of gene (or protein) sequence evolution is negatively correlated with the gene expression level. The impacts of the degree of tissue specificity on the evolutionary rate of gene sequence and that of expression profile, however, are opposite. Highly tissue-specific genes tend to evolve rapidly at the gene sequence level but slowly at the expression profile level. Thus, different forces and selective constraints must underlie the evolution of gene sequence and that of gene expression.  相似文献   

11.
Disease-causing variants in human genes usually lead to phenotypes specific to only a few tissues. Here, we present a method for predicting tissue specificity based on quantitative deregulation of protein complexes. The underlying assumption is that the degree of coordinated expression among proteins in a complex within a given tissue may pinpoint tissues that will be affected by a mutation in the complex and coordinated expression may reveal the complex to be active in the tissue. We identified known disease genes and their protein complex partners in a high-quality human interactome. Each susceptibility gene''s tissue involvement was ranked based on coordinated expression with its interaction partners in a non-disease global map of human tissue-specific expression. The approach demonstrated high overall area under the curve (0.78) and was very successfully benchmarked against a random model and an approach not using protein complexes. This was illustrated by correct tissue predictions for three case studies on leptin, insulin-like-growth-factor 2 and the inhibitor of NF-κB kinase subunit gamma that show high concordant expression in biologically relevant tissues. Our method identifies novel gene-phenotype associations in human diseases and predicts the tissues where associated phenotypic effects may arise.  相似文献   

12.
13.
14.
In this study, we have cloned the Chlamydia trachomatis genes incB and incC into the expression plasmid vectors from pET series for the subsequent isolation of recombinant proteins. As a result, we have obtained the first full-length recombinant C. trachomatis proteins IncB and IncC, which can be used for following antibody production and for study of their protein-protein interaction.  相似文献   

15.
The tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of the matrix metalloproteinases (MMPs). Since unregulated MMP activities are linked to arthritis, cancer, and atherosclerosis, TIMP variants that are selective inhibitors of disease-related MMPs have potential therapeutic value. The structures of TIMP/MMP complexes reveal that most interactions with the MMP involve the N-terminal pentapeptide of TIMP and the C-D beta-strand connector which occupy the primed and unprimed regions of the active site. The loop between beta-strands A and B forms a secondary interaction site for some MMPs, ranging from multiple contacts in the TIMP-2/membrane type-1 (MT1)-MMP complex to none in the TIMP-1/MMP-1 complex. TIMP-1 and its inhibitory domain, N-TIMP-1, are weak inhibitors of MT1-MMP; inhibition is not improved by grafting the longer AB loop from TIMP-2 into N-TIMP-1, but this change impairs binding to MMP-3 and MMP-7. Mutational studies with N-TIMP-1 suggest that its weak inhibition of MT1-MMP, as compared to other N-TIMPs, arises from multiple (>3) sequence differences in the interaction site. Substitutions for Thr2 of N-TIMP-1 strongly influence MMP selectivity; Arg and Gly, that generally reduce MMP affinity, have less effect on binding to MMP-9. When the Arg mutation is added to the N-TIMP-1(AB2) mutant, it produces a gelatinase-specific inhibitor with Ki values of 2.8 and 0.4 nM for MMP-2 and -9, respectively. Interestingly, the Gly mutant has a Ki of 2.1 nM for MMP-9 and >40 muM for MMP-2, indicating that engineered TIMPs can discriminate between MMPs in the same subfamily.  相似文献   

16.
17.
Uncoupling protein 3 (Ucp3) is located within the mitochondrial inner membrane of brown adipose tissue and skeletal muscle. It is thought to be implicated in lipid metabolism and defense against reactive oxygen species. We previously reported on a mutation in our breeding colony of Djungarian hamsters (Phodopus sungorus) that leads to brown adipose tissue specific lack of Ucp3 expression. In this study we compared wildtype with mutant hamsters on a broad genetic background. Hamsters lacking Ucp3 in brown adipose tissue displayed a reduced cold tolerance due to impaired nonshivering thermogenesis. This phenotype is associated with a global decrease in expression of metabolic genes but not of uncoupling protein 1. These data implicate that Ucp3 is necessary to sustain high metabolic rates in brown adipose tissue.  相似文献   

18.
As protein aggregation is potentially lethal, control of protein conformation by molecular chaperones is essential for cellular organisms. This is especially important during protein expression and translocation, since proteins are then unfolded and therefore most susceptible to form non-native interactions. Using TANGO, a statistical mechanics algorithm to predict protein aggregation, we here analyse the aggregation propensities of 28 complete proteomes. Our results show that between 10% and 20% of the residues in these proteomes are within aggregating protein segments and that this represents a lower limit for the aggregation tendency of globular proteins. Further, we show that not only evolution strongly pressurizes aggregation downwards by minimizing the amount of strongly aggregating sequences but also by selectively capping strongly aggregating hydrophobic protein sequences with arginine, lysine and proline. These residues are strongly favoured at these positions as they function as gatekeepers that are most efficient at opposing aggregation. Finally, we demonstrate that the substrate specificity of different unrelated chaperone families is geared by these gatekeepers. Chaperones face the difficulty of having to combine substrate affinity for a broad range of hydrophobic sequences and selectivity for those hydrophobic sequences that aggregate most strongly. We show that chaperones achieve these requirements by preferentially binding hydrophobic sequences that are capped by positively charged gatekeeper residues. In other words, targeting evolutionarily selected gatekeepers allows chaperones to prioritize substrate recognition according to aggregation propensity.  相似文献   

19.
【目的】本研究旨在探索松墨天牛Monochamus alternatus Hope在嗅觉识别寄主植物过程中扮演重要角色的气味结合蛋白(odorant binding proteins,OBPs)的结构及功能。【方法】利用生物信息学方法对得到的Malt OBP2和Malt OBP6基因序列和蛋白结构进行分析,并通过实时荧光定量PCR分析Malt OBP2和Malt OBP6在松墨天牛雄虫不同组织和时空中的表达差异,利用p ET32a(+)原核表达载体对Malt OBP2和Malt OBP6进行了诱导蛋白表达。【结果】本研究得到两个松墨天牛气味结合蛋白基因——Malt OBP2(Gen Bank登录号:KP120891)和Malt OBP6(Gen Bank登录号:KP120892),ORF长度分别为402 bp和408 bp,翻译的氨基酸序列均含有4个保守的半胱氨酸位点,表明得到的两个OBP基因的编码蛋白均属于Minus-C OBP亚家族;推导的两个OBP蛋白均有6个α螺旋区域,且α螺旋区域在两个蛋白的位置非常相似,但是两个OBP蛋白推测的配体结合位点和位点极性却完全不同。组织表达模式表明,Malt OBP2和Malt OBP6在成虫头部、触角、下颚(唇)须、腹部末端和足中均有表达,表达程度不一,但都在头部显著表达,触角中的表达量相比其他组织中较低或只是持平。发育表达结果表明,Malt OBP2在蛹触角中的表达量最高,而Malt OBP6在幼虫头部的表达量最高。本研究成功构建了原核表达载体p ET32aMalt OBP2和p ET32a-Malt OBP6,并进行了OBP蛋白诱导表达,低温(16℃和20℃)条件利于蛋白表达在上清液中,延长诱导表达时间(12 h)可以增加蛋白的表达量。【结论】本研究从松墨天牛体内得到了Minus-C OBP蛋白亚家族的两个基因Malt OBP2和Malt OBP6,通过配体结合位点推测它们具有不同的生理功能;通过组织表达谱结果推测这两个OBP基因在松墨天牛中的功能不仅仅局限于嗅觉识别,或还有味觉感受、化学感受等其他生理功能。本研究结果为两个OBP蛋白的结构和功能研究奠定了基础,为探索松墨天牛的化学感受机制提供了条件。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号