首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GPCR signaling is required for blood-brain barrier formation in drosophila   总被引:2,自引:0,他引:2  
Schwabe T  Bainton RJ  Fetter RD  Heberlein U  Gaul U 《Cell》2005,123(1):133-144
The blood-brain barrier of Drosophila is established by surface glia, which ensheath the nerve cord and insulate it against the potassium-rich hemolymph by forming intercellular septate junctions. The mechanisms underlying the formation of this barrier remain obscure. Here, we show that the G protein-coupled receptor (GPCR) Moody, the G protein subunits G alpha i and G alpha o, and the regulator of G protein signaling Loco are required in the surface glia to achieve effective insulation. Our data suggest that the four proteins act in a complex common pathway. At the cellular level, the components function by regulating the cortical actin and thereby stabilizing the extended morphology of the surface glia, which in turn is necessary for the formation of septate junctions of sufficient length to achieve proper sealing of the nerve cord. Our study demonstrates the importance of morphogenetic regulation in blood-brain barrier development and places GPCR signaling at its core.  相似文献   

2.
A number of restriction fragments that function as autonomously replicating sequences (ARSs) in yeast have been isolated from Drosophila melanogaster DNA. The behaviour in yeast of plasmids containing Drosophila ARS elements was studied and compared to that exhibited by the archetypal yeast ARS-1 plasmid. ARS functions were localised by subcloning and BAL-31 deletion analysis. These studies demonstrated the structural and functional complexity of Drosophila ARSs. Each Drosophila ARS element has at least two domains, one essential for replication (the replication sequence, RS) and a second (the replication enhancer, RE) which is essential for maximum function of the RS. The RS of three Drosophila ARSs was shown to contain a sequence identical to an 11 bp yeast ARS consensus sequence (5' A/T TTTATPuTTT A/T 3'). These observations lend support to the hypothesis that heterologous ARS elements may be of biological significance.  相似文献   

3.
Vertebrate claudin proteins are integral components of tight junctions, which function as paracellular diffusion barriers in epithelia. We identified Megatrachea (Mega), a Drosophila transmembrane protein homologous to claudins, and show that it acts in septate junctions, the corresponding structure of invertebrates. Our analysis revealed that Mega has transepithelial barrier function similar to the claudins. Also, Mega is necessary for normal tracheal cell morphogenesis but not for apicobasal polarity or epithelial integrity. In addition, we present evidence that Mega is essential for localization of the septate junction protein complex Coracle/Neurexin. The results indicate that claudin-like proteins are functionally conserved between vertebrates and Drosophila.  相似文献   

4.
Mitochondrial (mt) DNA of the higher basidiomycetes Lentinus edodes with a molecular weight of about 69 kb was partially digested with Sau3AI, cloned with plasmid YIp32 (a hybrid of pBR322 and the yeast leu2 gene) and analyzed for sequences capable of autonomous replication (ARSs) in the eukaryote Saccharomyces cerevisiae. One recombinant plasmid was isolated which contained 3.2 kb fragment of the mtDNA with ARS activity. This plasmid (named pSK52) exhibited a high-frequency yeast transformation and was found to be maintained within the cell as an extrachromosomal element. The stability and copy number properties of pSK52 were similar to those of the recombinant plasmid of YIp32 and S. cerevisiae mt-ARS constructed as a reference. Subcloning experiments were carried out to assess the localization of ARS on the above 3.2 kb fragment, revealing that the fragment contains at least two ARSs.  相似文献   

5.
The differentiation of the blood-brain barrier (BBB) is an essential process in the development of a complex nervous system and depends on alternative splicing. In the fly BBB, glial cells establish intensive septate junctions that require the cell-adhesion molecule Neurexin IV. Alternative splicing generates two different Neurexin IV isoforms: Neurexin IV(exon3), which is found in cells that form septate junctions, and Neurexin IV(exon4), which is found in neurons that form no septate junctions. Here, we show that the formation of the BBB depends on the RNA-binding protein HOW (Held out wings), which triggers glial specific splicing of Neurexin IV(exon3). Using a set of splice reporters, we show that one HOW-binding site is needed to include one of the two mutually exclusive exons 3 and 4, whereas binding at the three further motifs is needed to exclude exon 4. The differential splicing is controlled by nuclear access of HOW and can be induced in neurons following expression of nuclear HOW. Using a novel in vivo two-color splicing detector, we then screened for genes required for full HOW activity. This approach identified Cyclin-dependent kinase 12 (Cdk12) and the splicesosomal component Prp40 as major determinants in regulating HOW-dependent splicing of Neurexin IV. Thus, in addition to the control of nuclear localization of HOW, the phosphorylation of the C-terminal domain of the RNA polymerase II by Cdk12 provides an elegant mechanism in regulating timed splicing of newly synthesized mRNA molecules.  相似文献   

6.
We have reported the isolation of linking clones of HindIII and EcoRI fragments, altogether spanning a 230-kb continuous stretch of chromosome VI. The presence or absence of autonomously replicating sequence (ARS) activities in all of these fragments has been determined by using ARS searching vectors containing CEN4. Nine ARS fragments were identified, and their positions were mapped on the chromosome. Structures essential for and/or stimulative to ARS activity were determined for the ARS fragments by deletions and mutations. The organization of functional elements composed of core and stimulative sequences was found to be variable. Single core sequences were identified in eight of nine ARSs. The remaining ARS (ARS603) essential element is composed of two core-like sequences. The lengths of 3'- and 5'-flanking stimulative sequences required for the full activity of ARSs varied from ARS to ARS. Five ARSs required more than 100 bp of the 3'-flanking sequence as stimulative sequences, while not more than 79 bp of the 3' sequence was required by the other three ARSs. In addition, five ARSs had stimulative sequences varying from 127 to 312 bp in the 5'-flanking region of the core sequence. In general, these stimulative activities were correlated with low local delta Gs of unwinding, suggesting that the low local delta G of an ARS is an important element for determining the efficiency of initiation of replication of ARS plasmids.  相似文献   

7.
Fragments of chromosomal DNA from a variety of eucaryotes can act as ARSs (autonomously replicating sequence) in yeasts. ARSs enable plasmids to be maintained in extrachromosomal form, presumably because they function as initiation sites for DNA replication. We isolated eight different sequences from mouse chromosomal DNA which function as ARSs in Saccharomyces cerevisiae (bakers' yeast). Although the replication efficiency of the different mouse ARSs in yeasts appears to vary widely, about one-half of them functions as well as the yeast chromosomal sequence ARS1. Moreover, five of the ARSs also promote self replication of plasmids in Schizosaccharomyces pombe (fission yeast). Each of the ARSs was cloned into plasmids suitable for transformation of mouse tissue culture cells. Plasmids were introduced into thymidine kinase (TK)-deficient mouse L cells by the calcium phosphate precipitation technique in the absence of carrier DNA. In some experiments, the ARS plasmid contained the herpes simplex virus type 1 TK gene; in other experiments (cotransformations), the TK gene was carried on a separate plasmid used in the same transformation. In contrast to their behavior in yeasts, none of the ARS plasmids displayed a significant increase in transformation frequency in mouse cells compared with control plasmids. Moreover, only 1 of over 100 cell lines contained the original plasmid in extrachromosomal form. The majority of cell lines produced by transformation with an ARS TK plasmid contained multiple copies of plasmid integrated into chromosomal DNA. In most cases, results with plasmids used in cotransformations were similar to those for plasmids carrying TK. However, cell lines produced by cotransformations with plasmids containing any one of three of the ARSs (m24, m25, or m26) often contained extrachromosomal DNAs.  相似文献   

8.
Actin filaments are associated with the septate junctions of invertebrates   总被引:2,自引:0,他引:2  
N J Lane  V Flores 《Tissue & cell》1988,20(2):211-217
Septate junctions are almost ubiquitous in the tissues of invertebrates but are never found in those of vertebrates. In spite of their widespread occurrence and hence obvious importance to the invertebrates, their precise function has remained elusive although they have been variously considered to be regions of cell-cell coupling, permeability barriers or adhesion sites. This report demonstrates that elements of the cytoskeletal system insert into the cytoplasmic face of septate junctions. Actin filaments, identified by virtue of their capacity to bind the S1 subfragment of rabbit myosin, are associated with the membranes of septate junctions. Cytochalasin D, an actin depolymerizer, leads to disorganization of the intramembrane components of these junctions. These data suggest that a primary role of septate junctions could be to maintain intercellular cohesion and hence tissue integrity. The assembly and localization of these junctions may be mediated, directly or indirectly, by the cytoplasmic actin filaments associated with their lateral membranes.  相似文献   

9.
We have analyzed various autonomously replicating sequences (ARSs) in yeast nuclear extract with ARS-specific synthetic oligonucleotides. The EI oligonucleotide sequence, which is derived from HMRE-ARS, and the F1 oligonucleotide sequence, which is derived from telomeric ARS120, appeared to bind to the same cellular factor with high specificity. In addition, each of these oligonucleotides was a competitive inhibitor of the binding of the other. Binding of the ARS binding factor (ABF) to either of these oligonucleotides was inhibited strongly by plasmids containing ARS1 and telomeric TF1-ARS. DNase I footprinting analyses with yeast nuclear extract showed that EI and F1 oligonucleotides eliminated protection of the binding site of ARS binding factor I (ABFI) in domain B of ARS1. Sequence analyses of various telomeric (ARS120 and TF1-ARS) and nontelomeric ARSs (ARS1 and HMRE-ARS) showed the presence of consensus ABFI binding sites in the protein binding domains of all of these ARSs. Consequently, the ABFI and ABFI-like factors bind to these domain B-like sequences in a wide spectrum of ARSs, both telomeric and nontelomeric.  相似文献   

10.
Postendocytic sorting of G protein-coupled receptors (GPCRs) is driven by their interactions between highly diverse receptor sequence motifs with their interacting proteins, such as postsynaptic density protein (PSD95), Drosophila disc large tumor suppressor (Dlg1), zonula occludens-1 protein (zo-1) (PDZ) domain proteins. However, whether these diverse interactions provide an underlying functional specificity, in addition to driving sorting, is unknown. Here we identify GPCRs that recycle via distinct PDZ ligand/PDZ protein pairs that exploit their recycling machinery primarily for targeted endosomal localization and signaling specificity. The luteinizing hormone receptor (LHR) and β2-adrenergic receptor (B2AR), two GPCRs sorted to the regulated recycling pathway, underwent divergent trafficking to distinct endosomal compartments. Unlike B2AR, which traffics to early endosomes (EE), LHR internalizes to distinct pre-early endosomes (pre-EEs) for its recycling. Pre-EE localization required interactions of the LHR C-terminal tail with the PDZ protein GAIP-interacting protein C terminus, inhibiting its traffic to EEs. Rerouting the LHR to EEs, or EE-localized GPCRs to pre-EEs, spatially reprograms MAPK signaling. Furthermore, LHR-mediated activation of MAPK signaling requires internalization and is maintained upon loss of the EE compartment. We propose that combinatorial specificity between GPCR sorting sequences and interacting proteins dictates an unprecedented spatiotemporal control in GPCR signal activity.  相似文献   

11.
Epithelial tubes of the correct size and shape are vital for the function of the lungs, kidneys, and vascular system, yet little is known about epithelial tube size regulation. Mutations in the Drosophila gene sinuous have previously been shown to cause tracheal tubes to be elongated and have diameter increases. Our genetic analysis using a sinuous null mutation suggests that sinuous functions in the same pathway as the septate junction genes neurexin and scribble, but that nervana 2, convoluted, varicose, and cystic have functions not shared by sinuous. Our molecular analyses reveal that sinuous encodes a claudin that localizes to septate junctions and is required for septate junction organization and paracellular barrier function. These results provide important evidence that the paracellular barriers formed by arthropod septate junctions and vertebrate tight junctions have a common molecular basis despite their otherwise different molecular compositions, morphologies, and subcellular localizations.  相似文献   

12.
The blood-brain barrier (BBB) formed by brain microvascular endothelial cells (BMVEC), pericytes and astrocytes controls the transport of ions, peptides and leukocytes in and out of the brain. Tight junctions (TJ) composed of TJ proteins (occludin, claudins and zonula occludens) ensure the structural integrity of the BMVEC monolayer. Neuropathologic studies indicated that the BBB was impaired in alcohol abusers; however, the underlying mechanism of BBB dysfunction remains elusive. Using primary human BMVEC, we previously demonstrated that oxidative stress induced by ethanol (EtOH) metabolism in BMVEC activated myosin light chain kinase (MLCK), resulting in the enhanced phosphorylation of either cytoskeletal or TJ proteins, and in BBB impairment. We proposed that EtOH metabolites stimulated inositol 1,4,5-triphosphate receptor (IP(3)R)-operated intracellular calcium (Ca(2+)) release, thereby causing the activation of MLCK in BMVEC. Indeed, treatment of primary human BMVEC with EtOH or its metabolites resulted in the increased expression of IP(3)R protein and IP(3)R-gated intracellular Ca(2+) release. These functional changes paralleled MLCK activation, phosphorylation of cytoskeletal/TJ proteins, loss of BBB integrity, and enhanced leukocyte migration across BMVEC monolayers. Inhibition of either EtOH metabolism or IP(3)R activation prevented BBB impairment. These findings suggest that EtOH metabolites act as signaling molecules for the activation of MLCK via the stimulation of IP(3)R-gated intracellular Ca(2+) release in BMVEC. These putative events can lead to BBB dysfunction in the setting of alcoholism, and to neuro-inflammatory disorders promoting leukocyte migration across the BBB.  相似文献   

13.
Autonomously replicating sequences (ARSs) are thought to occur within, or adjacent to, the matrix attachment regions (MARs). To identify fish ARSs, MARs of the mud loach fish were obtained from nuclear matrices using a modified LIS method. These DNA fragments were screened for their ability to act as ARSs by being cloned into the ARS cloning vector, pURY19, and transformed into Saccharomyces cerevisiae. Sixteen ARSs were isolated, most of which were more efficient in transformation than the positive control vector, pURY19-2 microm, which contained the 2 microm circle origin of yeast. In particular, one clone, pURY19-ARS223, was 18 times more efficient in back-transforming E. coli than the positive control vector. Therefore, ARS223, which has strong ARS activity in yeast, could be a good candidate for inclusion in expression vehicles that are used to transfect fish cell lines or embryos. A DNA sequence analysis showed that the essential ARS elements contain potential ARS consensus sequences, and are predicted to have hairpin loop structures, or curved or kinked DNA. In addition, the MAR-Finder program suggested that ARSs also contain MAR motifs. These include AT tracts, ORI patterns, kinked DNA, ATC tracts, and Topoisomerase II consensus sequences. The in vitro matrix binding assay confirmed that all of the cloned ARSs could associate with the nuclear matrix. This indicates that ARSs elements may be located in or near the MARs. This is the first study that has identified and characterized ARSs in fish.  相似文献   

14.
《The Journal of cell biology》1996,134(6):1469-1482
The Discs large (Dlg) protein of Drosophila is the prototypic member of a growing family of proteins termed membrane-associated guanylate kinase homologs (MAGUKs). The MAGUKs are composed of a series of peptide domains that include one or three DHR/PDZs, an SH3, and a region homologous to guanylate kinase (GUK). We have previously shown that the product of this gene, the Dlg protein, is localized at the septate junctions between epithelial cells, and that mutations in the gene cause neoplastic overgrowth of the imaginal discs. The dlg locus is therefore defined as a tumor suppressor gene. In this paper, we show that the Dlg protein is localized on the cytoplasmic face of the septate junction and is required for the maintenance of this structure. It is also required for proper organization of the cytoskeleton, for the differential localization of membrane proteins, and for apicobasal polarity of epithelial cells. However, these other functions can be uncoupled from Dlg's role as a tumor suppressor since mutations in two domains of the protein, the SH3 and GUK, cause loss of normal cell proliferation control without affecting the other functions of the protein. These results suggest that, besides regulating cellular proliferation, the Dlg protein is a critical component of the septate junctions and is required for maintaining apicobasal polarity in Drosophila epithelium.  相似文献   

15.
T G Palzkill  C S Newlon 《Cell》1988,53(3):441-450
Autonomously replicating sequences (ARSs) of the yeast S. cerevisiae function as replication origins on plasmids and probably also on chromosomes. ARS function requires a copy of the ARS core consensus (5'-[A/T]TTTAT[A/G]TTT[A/T]-3') and additional sequences 3' to the T-rich strand of the consensus. Our analysis of an ARS from chromosome III, the C2G1 ARS, suggests that ARS function depends on the presence of an exact match to the core consensus and the presence of additional near matches in the 3' flanking region. We have demonstrated that ARS function can be mediated by multiple matches to the core consensus by constructing synthetic ARS elements from oligonucleotides containing copies of the consensus sequence. We find that two copies of the core consensus are sufficient for ARS activity and that an artificial ARS as efficient as a natural chromosomal ARS can be constructed from multiple core consensus elements in a specific orientation.  相似文献   

16.
17.
Arrestin1 mediates light-dependent rhodopsin endocytosis and cell survival   总被引:6,自引:0,他引:6  
Satoh AK  Ready DF 《Current biology : CB》2005,15(19):1722-1733
BACKGROUND: Arrestins are pivotal, multifunctional organizers of cell responses to GPCR stimulation, including cell survival and cell death. In Drosophila norpA and rdgC mutants, endocytosis of abnormally stable complexes of rhodopsin (Rh1) and fly photoreceptor Arrestin2 (Arr2) triggers cell death, implicating Rh1/Arr2-bearing endosomes in pro-cell death signaling, potentially via arrestin-mediated GPCR activation of effector kinase pathways. In order to further investigate arrestin function in photoreceptor physiology and survival, we studied Arr2's partner photoreceptor arrestin, Arr1, in developing and adult Drosophila compound eyes. RESULTS: We report that Arr1, but not Arr2, is essential for normal, light-induced rhodopsin endocytosis. Also distinct from Arr2, Arr1 is essential for light-independent photoreceptor survival. Photoreceptor cell death caused by loss of Arr1 is strongly suppressed by coordinate loss of Arr2. We further find that Rh1 C-terminal phosphorylation is essential for light-induced endocytosis and also for translocation of Arr1, but not Arr2, from dark-adapted photoreceptor cytoplasm to photosensory membrane rhabdomeres. In contrast to a previous report, we do not find a requirement for photoreceptor myosin kinase NINAC in Arr1 or Arr2 translocation. CONCLUSIONS: The two Drosophila photoreceptor arrestins mediate distinct and essential cell pathways downstream of rhodopsin activation. We propose that Arr1 mediates an endocytotic cell-survival activity, scavenging phosphorylated rhodopsin and thereby countering toxic Arr2/Rh1 accumulation; elimination of toxic Arr2/Rh1 in double mutants could thus rescue arr1 mutant photoreceptor degeneration.  相似文献   

18.
Minichromosome maintenance protein 1 (Mcm1) is required for efficient replication of autonomously replicating sequence (ARS)-containing plasmids in yeast cells. Reduced DNA binding activity in the Mcm1-1 mutant protein (P97L) results in selective initiation of a subset of replication origins and causes instability of ARS-containing plasmids. This plasmid instability in the mcm1-1 mutant can be overcome for a subset of ARSs by the inclusion of flanking sequences. Previous work showed that Mcm1 binds sequences flanking the minimal functional domains of ARSs. Here, we dissected two conserved telomeric X ARSs, ARS120 (XARS6L) and ARS131a (XARS7R), that replicate with different efficiencies in the mcm1-1 mutant. We found that additional Mcm1 binding sites in the C domain of ARS120 that are missing in ARS131a are responsible for efficient replication of ARS120 in the mcm1-1 mutant. Mutating a conserved Mcm1 binding site in the C domain diminished replication efficiency in ARS120 in wild-type cells, and increasing the number of Mcm1 binding sites stimulated replication efficiency. Our results suggest that threshold occupancy of Mcm1 in the C domain of telomeric ARSs is required for efficient initiation. We propose that origin usage in Saccharomyces cerevisiae may be regulated by the occupancy of Mcm1 at replication origins.  相似文献   

19.
Protein kinase D (PKD)/protein kinase C mu is a serine/threonine protein kinase activated by growth factors, antigen-receptor engagement, and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires protein kinase C (PKC) activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular distribution of PKD was analyzed in live cells by imaging fluorescent protein-tagged PKD and in fixed cells by immunocytochemistry. We found that PKD shuttled between the cytoplasm and the nucleus in both fibroblasts and epithelial cells. Cell stimulation with mitogenic GPCR agonists that activate PKD induced a transient nuclear accumulation of PKD that was prevented by inhibiting PKC activity. The nuclear import of PKD requires its cys2 domain in conjunction with a nuclear import receptor, while its nuclear export requires its pleckstrin homology domain and a competent Crm1-dependent nuclear export pathway. This study thus characterizes the regulated nuclear transport of a signaling molecule in response to mitogenic GPCR agonists and positions PKD as a serine kinase whose kinase activity and intracellular localization is coordinated by PKC.  相似文献   

20.
The surfaces of miracidia of Schistosoma mansoni were examined ultrastructurally during in vitro transformation to sporocysts. Before transformation, the surface was composed of ciliated epithelial plates (EP) that were set into a reticulum of narrow syncytial ridges (SR). The EP were attached to SR by extensive pleated septate junctions that had 18-24 strands of intramembrane particles (IMP) on the protoplasmic faces and complementary pits on the ectoplasmic faces. These junctions also appeared to separate the EP plasma membrane into apical and basolateral domains with a larger number of IMPs on the latter. Transformation was induced by placing the miracidia in salt containing medium which also halted ciliary beating. In 2-5 hr, the SR expanded until they formed a syncytium covering the parasite surface, while the EP retracted and rounded up. During this time, the EP and SR were held in contact with one another by the septate junctions which became progressively convoluted. Subsequently, the EP detached from the parasite. When transforming miracidia were returned to fresh water, the cilia resumed beating and the EP detached from the parasite surface and exposed the underlying basement membrane. Those EP that remained attached were connected only by septate junctions to the expanded SR. These studies demonstrate that the formation of the syncytium occurs gradually with contact maintained between EP and SR via the septate junctions. Further, the septate junctions are similar to occluding junctions in mammalian epithelia since they segregate the plasma membrane of the EP and they have an adhesive function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号