首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
SRY, like HMG1, recognizes sharp angles in DNA.   总被引:56,自引:7,他引:49       下载免费PDF全文
  相似文献   

3.
4.
5.
X染色体的DNA序列结构不同于6、7、8、10、11、12号染色体   总被引:1,自引:1,他引:0  
吕占军  翟羽  王秀芳  宋淑霞 《遗传学报》2003,30(11):1051-1060
雌性哺乳动物X染色体上的大部分基因均因X染色体失活作用而失去表达能力 ,X染色体长臂表现失活更明显。虽然对X染色体失活的许多方面都有所了解 ,但是仍然不清楚失活信号沿着X染色体全长扩散的机制。为了了解X染色体是否有不同于其他染色体的基因组学特征 ,这些特征是否关系到X染色体的失活扩散和维持 ,分析 6、7、8、1 0、1 1、1 2号染色体和X染色体DNA序列 7碱基 (7nt)组合水平的结构是否显示差异。从NCBI基因库(http :∥www .ncbi.nlm .nih .gov genome guide)下载 7条染色体长臂各 6 0Mb区域。将这 6 0Mb区域分为 0 5Mb (或 5 0kb)一段 ,对每一段DNA做 7nt字符串组合分析 ,如 1~ 7,2~ 8,3~ 9…… ,记录每种 7nt字符串的频率 ,A、C、G和T4个硷基的 7nt字符串共有 4 7=1 6 384种组合。根据数字差异显示的结果 (http :∥www .ncbi.nlm .nih .gov genome guide) ,选择在扁桃腺生发中心B细胞中高表达的基因 70个 ,用以计算所有内含子 (有义链 )的 7nt频率值。每个内含子被记录为一组 7nt频率值 ,求和相同基因中的所有内含子相同 7nt字符串的频率值 ,再用该和乘以该基因的表达频率得该基因 7nt字符串的频率值 ,求和 70个基因的 7nt字符串的频率值称做intron 7nt,该值试图模拟细胞中RNA小片段的总和。  相似文献   

6.
Inter-chromosomal gene regulation in the mammalian cell nucleus   总被引:4,自引:0,他引:4  
Cellular phenotypes can critically rely on mono-allelic gene expression. Recent studies suggest that in mammalian cells inter-chromosomal DNA interactions may mediate the decision which allele to activate and which to silence. Here, these findings are discussed in the context of knowledge on gene competition, chromatin dynamics, and nuclear organization. We argue that data obtained by 4C technology strongly support the idea that chromatin folds according to self-organizing principles. In this concept, the nuclear positioning of a given locus is probabilistic as it also depends on the properties of neighbouring DNA segments and, by extrapolation, the whole chromosome. The linear distribution of repetitive DNA sequences and of active and inactive DNA regions is important for the folding and relative positioning of chromosomes. This stochastic concept of nuclear organization predicts that tissue-specific interactions between two selected loci present on different chromosomes will be rare.  相似文献   

7.
8.
To demonstrate that sequestration A (SeqA) protein binds preferentially to hemimethylated GATC sequences at replication forks and forms clusters in Escherichia coli growing cells, we analysed, by the chromatin immunoprecipitation (ChIP) assay using anti-SeqA antibody, a synchronized culture of a temperature-sensitive dnaC mutant strain in which only one round of chromosomal DNA replication was synchronously initiated. After synchronized initiation of chromosome replication, the replication origin oriC was first detected by the ChIP assay, and other six chromosomal regions having multiple GATC sequences were sequentially detected according to bidirectional replication of the chromosome. In contrast, DNA regions lacking the GATC sequence were not detected by the ChIP assay. These results indicate that SeqA binds hemimethylated nascent DNA segments according to the proceeding of replication forks in the chromosome, and SeqA releases from the DNA segments when fully methylated. Immunofluorescence microscopy reveals that a single SeqA focus containing paired replication apparatuses appears at the middle of the cell immediately after initiation of chromosome replication and the focus is subsequently separated into two foci that migrate to 1/4 and 3/4 cellular positions, when replication forks proceed bidirectionally an approximately one-fourth distance from the replication origin towards the terminus. This supports the translocating replication apparatuses model.  相似文献   

9.
Heterochromatin-mediated control of virulence gene expression   总被引:5,自引:2,他引:3  
  相似文献   

10.
In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell nucleus that has a diameter of about 10 μm. The folding of genomic DNA is mediated via assembly of DNA-protein complex, chromatin. In addition to the reduction of genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and to mark active (transcribed) and repressed (non-transcribed) genes. Consequently, epigenetic regulation of gene expression occurs at the level of DNA packaging in chromatin. Taking into account the increasing attention of scientific community toward epigenetic systems of gene regulation, it is very important to understand how DNA folding in chromatin is related to gene activity. For many years the hierarchical model of DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber) is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/chromosome scaffold. Recent studies have demonstrated that there is much less regularity in chromatin folding within the cell nucleus. The very existence of 30-nm chromatin fibers in living cells was questioned. On the other hand, it was found that chromosomes are partitioned into self-interacting spatial domains that restrict the area of enhancers action. Thus, TADs can be considered as structural-functional domains of the chromosomes. Here we discuss the modern view of DNA packaging within the cell nucleus in relation to the regulation of gene expression. Special attention is paid to the possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the model postulating that partitioning of the chromosome into TADs is determined by the distribution of active and inactive chromatin segments along the chromosome.This article was specially invited by the editors and represents work by leading researchers.  相似文献   

11.
12.
13.
14.
15.
It was observed before that DNAin situin chromatin of mitotic cells is more sensitive to denaturation than DNA in chromatin of interphase cells. DNA sensitivity to denaturation, in these studies, was analyzed by exposing cells to heat or acid and using acridine orange (AO), the metachromatic fluorochrome which can differentially stain double-stranded (ds) vs single-stranded (ss) nucleic acids, as a marker of the degree of DNA denaturation. However, without prior cell treatment with heat or acid no presence of single-stranded DNA in either mitotic or interphase cells was detected by this assay. In the present experiments we demonstrate that DNAin situin mitotic cells, without any prior treatment that can induce DNA denaturation, is sensitive to ss-specific S1 and mung bean nucleases. Incubation of permeabilized human T cell leukemic MOLT-4, promyelocytic HL-60, histiomonocytic lymphoma U937 cells, or normal PHA-stimulated lymphocytes with S1 or mung bean nucleases generated extensive DNA breakage in mitotic cells. DNA strand breaks were detected using fluorochrome-labeled triphosphonucleotides in the reaction catalyzed by exogenous terminal deoxynucleotidyl transferase. Under identical conditions of the cells’ exposure to ss-specific nucleases, DNA breakage in interphase cells was of an order of magnitude less extensive compared to mitotic cells. The data indicate that segments of DNA in mitotic chromosomes, in contrast to interphase cells, may be in a conformation which is sensitive to ss nucleases. This may be a reflection of the differences in the torsional stress of DNA loops between interphase and mitotic chromatin. Namely, greater stress in mitotic loops may lead to formation of the hairpin-loop structures by inverted repeats; such structures are sensitive to ss nucleases. The present method of detection of such segments appears to be more sensitive than the use of AO. The identification of mitotic cells based on sensitivity of their DNA to ss nucleases provides an additional method for their quantification by flow cytometry.  相似文献   

16.
刘亚军  张峰  刘宏德  孙啸 《遗传》2017,39(8):717-725
基因转录调控及其机制分析是后基因组时代生物学研究的重点之一。随着高通量测序技术的发展,人们可以从不同层面研究基因的转录调控行为,从转录组、转录因子结合,到染色质局部结构和整体空间构象,可系统分析转录调控的分子机制。干细胞分化过程的转录调控分析对研究再生医学和理解细胞癌变机制等具有重要意义。本文综述了下一代测序技术在干细胞转录调控研究中的应用,包括:(1)基于基因芯片或RNA测序的转录组分析;(2)基于染色体免疫共沉淀(chromatin immunoprecipitation, ChIP)测序的表观基因组和转录因子结合信息的分析;(3)基于DNase 酶切测序(DNase-Seq)的染色质开放性分析;(4)基于高通量染色质构象捕获(high-throughput chromosome conformation capture, Hi-C)技术的染色体远程相互作用分析。从基因表达谱、转录因子结合和基因组三维结构等层面展开介绍,重点关注了一些多能性转录因子(Oct4、Sox2和Nanog等)在维持干细胞干性和分化中的调控作用,以期为干细胞转录调控的研究提供借鉴和参考。  相似文献   

17.
18.
19.
20.
Chromosome kissing   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号