首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Initiator tRNAs are used exclusively for initiation of protein synthesis and not for elongation. We show that both Escherichia coli and eukaryotic initiator tRNAs have negative determinants, at the same positions, that block their activity in elongation. The primary negative determinant in E. coli initiator tRNA is the C1xA72 mismatch at the end of the acceptor stem. The primary negative determinant in eukaryotic initiator tRNAs is located in the TPsiC stem, whereas a secondary negative determinant is the A1:U72 base pair at the end of the acceptor stem. Here we show that E. coli initiator tRNA also has a secondary negative determinant for elongation and that it is the U50.G64 wobble base pair, located at the same position in the TPsiC stem as the primary negative determinant in eukaryotic initiator tRNAs. Mutation of the U50.G64 wobble base pair to C50:G64 or U50:A64 base pairs increases the in vivo amber suppressor activity of initiator tRNA mutants that have changes in the acceptor stem and in the anticodon sequence necessary for amber suppressor activity. Binding assays of the mutant aminoacyl-tRNAs carrying the C50 and A64 changes to the elongation factor EF-Tu.GTP show marginally higher affinity of the C50 and A64 mutant tRNAs and increased stability of the EF-Tu.GTP. aminoacyl-tRNA ternary complexes. Other results show a large effect of the amino acid attached to a tRNA, glutamine versus methionine, on the binding affinity toward EF-Tu.GTP and on the stability of the EF-Tu.GTP.aminoacyl-tRNA ternary complex.  相似文献   

2.
It has recently been shown that the non-formylated initiator Met-tRNAfMet from E. coli can form a stable ternary complex with the elongation factor EF-Tu and GTP. Using the protection of EF-Tu:GTP against spontaneous hydrolysis of the aminoacylester bond of Met-tRNAfMet, we confirm these results, and show that the protection is specific for the non-formylated form of the initiator tRNA. The ternary complex Met-tRNAfMet:EF-Tu:GTP can be isolated by column chromatography in a way similar to that demonstrated previously with EF-Tu complexed to the elongator Met-tRNAmMet. 32P-labeled Met-tRNAfMet within the ternary complex was analyzed by the footprinting technique. The pattern of initiator tRNA protection by EF-Tu against ribonuclease digestion is not significantly different from the one found previously for elongator tRNAs. These results lead us to suggest that the initiator tRNAfMet, under growth conditions which do not permit formylation, may to some extent function as an elongator tRNA.  相似文献   

3.
The interaction of the Escherichia coli elongation factor Tu guanosine tetraphosphate complex (EF-Tu ppGpp) with aminoacyl-tRNAs(aa-tRNA) was reinvestigated by gel filtration and hydrolysis protection experiments. These experiments show that EF-Tu X ppGpp like EF-Tu X GDP (Pingoud, A., Block, W., Wittinghofer, A., Wolf, H. & Fischer, E. (1982) J. Biol. Chem. 257, 11261-11267) forms a fairly stable complex with Phe-tRNAPhe, KAss being 0.6 X 10(5) M-1 at 25 degrees C. The binding of the EF-Tu X ppGpp X aa-tRNA complex to programmed ribosomes was investigated by a centrifugation technique. It is shown that this complex is bound codon-specific with KAss = 3 X 10(7) M-1 at 0 degrees C and that it stimulates peptidyl transfer. A numerical estimation of the intracellular concentration of EF-Tu X GTP X aa-tRNA and EF-Tu X ppGpp X aa-tRNA during normal growth and under the stringent response indicates that ppGpp accumulation does affect the EF-Tu X GTP X aa-tRNA concentration but does not lead to major depletion of this pool. Furthermore, due to the higher affinity of EF-Tu X GTP to aa-tRNA and of the ternary complex EF-Tu X GTP X aa-tRNA to the ribosome, EF-Tu X ppGpp X aa-tRNA binding to the ribosome is not significant. According to our measurements and calculations, therefore, a direct participation of EF-Tu in slowing down the rate of protein biosynthesis and improving its accuracy during amino acid starvation is not obvious.  相似文献   

4.
The elongation factor Tu binds aminoacyl-tRNA in the presence of GDP   总被引:7,自引:0,他引:7  
Escherichia coli elongation factor (EF-Tu) binds aminoacyl-tRNAs (aa-tRNA) not only in the presence of GTP but also in the presence of GDP. Complex formation leads to a protection of the aa-tRNA against nonenzymatic deacylation and digestion by pancreatic ribonuclease, as well as to a protection of EF-Tu against proteolysis by trypsin. The equilibrium constant for the binding of Phe-tRNAPheyeast for example to EF-Tu.GDP has been determined to be 0.7 X 10(5) M-1 which is 2 orders of magnitude lower than the equilibrium constant for Phe-tRNAPheyeast binding to EF-Tu.GTP. In the presence of kirromycin, aminoacyl-tRNA binding to EF-Tu.GDP is not affected as much: Phe-tRNAPheyeast is bound with an equilibrium constant of 3 X 10(5) M-1. While there is also a measurable interaction between EF-Tu.GTP and tRNA, such an interaction cannot be detected with EF-Tu.GDP and tRNA, not even at millimolar concentrations. A so far undetected complex formation between aminoacyl-tRNA and EF-Tu.GTP in the presence of pulvomycin, however, could be detected. The results are discussed in terms of the structural requirements of ternary complex formation and in the light of proofreading schemes involving A-site binding on the E. coli ribosome.  相似文献   

5.
The exchange of elongation factor Tu (EF-Tu)-bound GTP in the presence and absence of elongation factor Ts (EF-Ts) was monitored by equilibrium exchange kinetic procedures. The kinetics of the exchange reaction were found to be consistent with the formation of a ternary complex EF-Tu X GTP X EF-Ts. The equilibrium association constants of EF-Ts to the EF-Tu X GTP complex and of GTP to EF-Tu X EF-Ts were calculated to be 7 X 10(7) and 2 X 10(6) M-1, respectively. The dissociation rate constant of GTP from the ternary complex was found to be 13 s-1. This is 500 times larger than the GTP dissociation rate constant from the EF-Tu X GTP complex (2.5 X 10(-2) s-1). A procedure based on the observation that EF-Tu X GTP protects the aminoacyl-tRNA molecule from phosphodiesterase I-catalyzed hydrolysis was used to study the interactions of EF-Tu X GTP with Val-tRNAVal and Phe-tRNAPhe. Binding constants of Phe-tRNAPhe and Val-tRNAVal to EF-Tu X GTP of 4.8 X 10(7) and 1.2 X 10(7)M-1, respectively, were obtained. The exchange of bound GDP with GTP in solution in the presence of EF-Ts was also examined. The kinetics of the reaction were found to be consistent with a rapid equilibrium mechanism. It was observed that the exchange of bound GDP with free GTP in the presence of a large excess of the latter was accelerated by the addition of aminoacyl-tRNA. On the basis of these observations, a complete mechanism to explain the interactions among EF-Tu, EF-Ts, guanine nucleotides, and aminoacyl-tRNA has been developed.  相似文献   

6.
A new approach for the fluorescence labeling of an aminoacyl-tRNA at the 3'-end is applied to study its interaction with bacterial elongation factor Tu (EF-Tu) and GTP at equilibrium. The penultimate cytidine residue in yeast tRNATyr-C-C-A was replaced by 2-thiocytidine (s2C). The resulting tRNATyr-C-s2C-A was aminoacylated and then alkylated at the s2C residue with N-(iodoacetylaminoethyl)-5-naphthylamine-1-sulfonic acid (1,5-I-AEDANS). A greater than 100% increase in the intensity of fluorescence emission of the modified Tyr-tRNATyr-C-s2C(AEDANS)-A was observed upon interaction with EF-Tu.GTP. A ternary complex dissociation constant of 1.27 X 10(-8) M was calculated from this direct interaction. Using such fluorescent aminoacyl-tRNA, the affinity of any unmodified aminoacyl-tRNA can be determined by competition experiments. By this approach, we show here that the affinity of unmodified Tyr-tRNATyr-C-C-A is identical to that of the modified Tyr-tRNATyr. This indicates that the fluorescence labeling procedure applied does not alter the affinity of the aminoacyl-tRNA for EF-Tu.GTP. The introduction of 2-thiocytidine into nucleic acids and their labeling with spectroscopic reporter groups may provide a unique means of investigating various types of nucleic acid-protein interactions.  相似文献   

7.
In bacterial polypeptide synthesis aminoacyl-tRNA (aa-tRNA) bound to elongation factor Tu (EF-Tu) and GTP is part of a crucial intermediate ribonucleoprotein complex involved in the decoding of messenger RNA. The conformation and topology as well as the affinity of the macromolecules in this ternary aa-tRNA X EF-Tu X GTP complex are of fundamental importance for the nature of the interaction of the complex with the ribosome. The structural elements of aa-tRNA required for interaction with EF-Tu and GTP and the resulting functional implications are presented here.  相似文献   

8.
The elongation factor 1 alpha (aEF-1 alpha) was purified to homogeneity from the thermoacidophilic archaebacterium Sulfolobus solfataricus by chromatographic procedures utilising DEAE-Sepharose, hydroxyapatite and FPLC on Mono S. The purified protein binds [3H]GDP at a 1:1 molar ratio and it is essential for poly(Phe) synthesis in vitro; it also binds GTP but not ATP. These findings indicate that aEF-1 alpha is the counterpart of the eubacterial elongation factor Tu (EF-Tu). Purified aEF-1 alpha is a monomeric protein with a relative molecular mass of 49,000 as determined by SDS/PAGE and by gel filtration on Sephadex G-100; its isoelectric point is 9.1. The overall amino acid composition did not reveal significant differences when compared with the amino acid composition of eubacterial EF-Tu from either Escherichia coli or Thermus thermophilus, of eukaryotic EF-1 alpha from Artemia salina or of archaebacterial EF-1 alpha from Methanococcus vannielii. The close similarities between the average hydrophobicity and the numbers of hydrogen-bond-forming or non-helix-forming residues suggest that common structural features exist among the factors compared. aEF-1 alpha shows remarkable thermophilic properties, as demonstrated by the rate of [3H]GDP binding which increases with temperature, reaching a maximum at 95 degrees C; it is also quite heat-resistant, since after a 6-h exposure at 60 degrees C and 87 degrees C the residual [3H]GDP-binding ability was still 90% and 54% of the control, respectively. The affinity of aEF-1 alpha for GDP and GTP was also evaluated. At 80 degrees C Ka' for GDP was about 30-fold higher than Ka' for GTP; at the same temperature Kd' for GDP was 1.7 microM and Kd' for GTP was 50 microM; these values were 300-fold and 100-fold higher, respectively, than those reported for E. coli EF-Tu at 30 degrees C; compared to the values at 0 degree C of EF-Tu from E. coli and T. thermophilus or EF-1 alpha from A. salina, pig liver and calf brain, smaller differences were observed with eukaryotic factors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Eubacterial peptidyl-tRNA hydrolase (PTH) recycles all N-blocked aminoacyl-tRNA molecules but initiator formyl-methionyl-tRNAfMet, the acceptor helix of which is characterized by a 1-72 mismatch. Positive selection by PTH of noninitiator tRNA molecules with a full 1-72 base pair is abolished, however, upon the removal of the 5'-phosphate. The tRNA 5'-phosphate plays therefore the role of a relay between the enzyme and the status of the 1-72 base pair. In this study, the receptor site for the 5'-phosphate of elongator peptidyl-tRNAs and the position at the surface of PTH of the 3'-end of complexed peptidyl-tRNA are identified by site-directed mutagenesis experiments. The former site comprehends two cationic side chains (K105 and R133) which are likely to clamp the phosphate. The second corresponds to a four asparagine cluster (N10, N21, N68, and N114). By using these two positional constraints, the acceptor arm of elongation factor Tu-bound Phe-tRNAPhe could be docked to PTH. Contacts involve the acceptor and TPsiC stems. By comparing the obtained 3D model to that of EF-Tu:Phe-tRNAPhe crystalline complex in which the 5'-phosphate of the ligand also lies between a K and an R side chain, we propose that, in both systems, the capacity of the 5'-phosphate of a tRNA to reach or not a receptor site is the main identity element governing generic selection of elongator tRNAs. On the other hand, while the 1-72 mismatch acts as an antideterminant for PTH or EF-Tu recognition, it behaves as a positive determinant for the formylation of initiator Met-tRNAfMet.  相似文献   

10.
The effects of GDP and of aurodox (N-methylkirromycin) on the affinity of elongation factor Tu (EF-Tu) for aminoacyl-tRNA (aa-tRNA) have been quantified spectroscopically by using Phe-tRNA(Phe)-Fl8, a functionally active analogue of Phe-tRNA(Phe) with a fluorescein dye convalently attached to the s4U-8 base. The association of EF-Tu.GDP with Phe-tRNA(Phe)-Fl8 resulted in an average increase of 33% in fluorescein emission intensity. This spectral change was used to monitor the extent of ternary complex formation as a function of EF-Tu.GDP concentration, and hence to obtain a dissociation constant, directly and at equilibrium, for the EF-Tu.GDP-containing ternary complex. The Kd for the Phe-tRNA(Phe)-Fl8.EF-Tu.GDP complex was found to average 28.5 microM, more than 33,000-fold greater than the Kd of the Phe-tRNA(Phe)-Fl8.EF-Tu.GTP complex under the same conditions. In terms of free energy, the delta G degree for ternary complex formation at 6 degrees C was -11.5 kcal/mol with GTP and -5.8 kcal/mol with GDP. Thus, the hydrolysis of the ternary complex GTP results in a dramatic decrease in the affinity of EF-Tu for aa-tRNA, thereby facilitating the release of EF-Tu.GDP from the aa-tRNA on the ribosome. Aurodox (200 microM) decreased the Kd of the GDP complex by nearly 20-fold, to 1.46 microM, and increased the Kd of the GTP complex by at least 6-fold. The binding of aurodox to EF-Tu therefore both considerably strengthens EF-Tu.GDP affinity for aa-tRNA and also weakens EF-Tu.GTP affinity for aa-tRNA.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
A single amino acid substitution (Asp to Asn) at position 138 of Escherichia coli elongation factor Tu (EF-Tu) was introduced in the tufA gene clone by oligonucleotide site-directed mutagenesis. The mutated tufA gene was then expressed in maxicells. The properties of [35S]methionine-labeled mutant and wild type EF-Tu were compared by in vitro assays. The Asn-138 mutation greatly reduced the protein's affinity for GDP; however, this mutation dramatically increased the protein's affinity for xanthosine 5'-diphosphate. The mutant protein forms a stable complex with Phe-tRNA and xanthosine 5'-triphosphate, which binds to ribosomes, whereas it does not form a complex with Phe-tRNA and GTP (10 microM). These results suggest that in EF-Tu.nucleoside diphosphate complexes, amino acid residue 138 must interact with the substituent on C-2 of the purine ring. Thus, in wild type EF-Tu, Asp-138 would hydrogen bond to the 2-amino group of GDP, and in the mutant EF-Tu, Asn-138 would form an equivalent hydrogen bond with the 2-carbonyl group of xanthosine 5'-diphosphate. Aspartic acid 138 is conserved in the homologous sequences of all GTP regulatory proteins. This mutation would allow one to specifically alter the nucleotide specificity of other GTP regulatory proteins.  相似文献   

12.
Selenocysteine-incorporating tRNA(Sec)(UCA), the product of selC, was isolated from E.coli and aminoacylated with serine. The equilibrium dissociation constant for the interaction of Ser-tRNA(Sec)(UCA) with elongation factor Tu.GTP was determined to be 5.0 +/- 2.5 x 10(-8) M. Compared with the dissociation constants of the two elongator Ser-tRNA(Ser) species (Kd = 7 x 10(-10) M), the selenocysteine-incorporating UGA suppressor tRNA has an almost hundred fold weaker affinity for EF-Tu.GTP. This suggests a mechanism by which the Ser-tRNA(Sec) is prevented in recognition of UGA codons. This tRNA is not bound to EF-Tu.GTP and is converted to selenocysteinyl-tRNA(Sec). We also demonstrate the lack of an efficient interaction of Sec-tRNA(Sec)(UCA) with EF-Tu.GTP. The results of this work are in support of a mechanism by which the selenocysteine incorporation at UGA nonsense codons is mediated by an elongation factor other than EF-Tu.GTP.  相似文献   

13.
Changes in the coordination of Mn2+ to nucleotide, water and protein at the active site of elongation factor Tu (EF-Tu) have been studied by electron paramagnetic resonance (EPR) spectroscopy. From the time dependence of the Mn2+ spectrum after addition of GTP to EF-Tu X Mn, it was apparent that three complexes with different EPR linewidths could be detected. Using additional information from the kinetics of 32Pi production and release from EF-Tu X Mn X [gamma-32P]GTP these were identified as EF-Tu X Mn X GTP (linewidth 4.2 mT), EF-Tu X Mn X GDP X Pi (1.20 mT) and EF-Tu X Mn X GDP (1.29 mT). The linewidth for EF-Tu X Mn was 1.51 mT. The rate constant for GTP cleavage on EF-Tu was 0.01 min-1 at 24 C, for Pi release from the EF-Tu X GDP X Pi complex 0.0033 min-1. The corresponding rate constants in the presence of Mg2+ were 0.003 min-1 and 0.0065 min-1. The rate constant for reversal of the cleavage step was found to be much smaller than that for the rate of Pi release (and consequently much smaller than in the forward direction), as shown by 31P-NMR experiments on the incorporation of 18O into Pi from GTP hydrolyzed in the presence of H2 18O. EPR experiments using specifically 17O-labelled GTPs demonstrated an interaction of Mn2+ with the beta-phosphate in both the EF-Tu X GDP X Pi and EF-Tu X GDP complexes. Inorganic phosphate in the EF-Tu X GDP X Pi complex was found not to interact with the metal ion. From EPR experiments in H2 17O, it was concluded that the most probable number of water molecules in the different complexes was 4 (EF-Tu X Mn), 5 (EF-Tu X Mn X GDP X Pi) and 3 (EF-Tu X Mn X GDP), with 2, 0 and 2 metal-protein interactions respectively.  相似文献   

14.
A structural and functional understanding of resistance to the antibiotic kirromycin in Escherichia coli has been sought in order to shed new light on the functioning of the bacterial elongation factor Tu (EF-Tu), in particular its ability to act as a molecular switch. The mutant EF-Tu species G316D, A375T, A375V and Q124K, isolated by M13mp phage-mediated targeted mutagenesis, were studied. In this order the mutant EF-Tu species showed increasing resistance to the antibiotic as measured by poly(U)-directed poly(Phe) synthesis and intrinsic GTPase activities. The K'd values for kirromycin binding to mutant EF-Tu.GTP and EF-Tu.GDP increased in the same order. All mutation sites cluster in the interface of domains 1 and 3 of EF-Tu.GTP, not in that of EF-Tu.GDP. Evidence is presented that kirromycin binds to this interface of wild-type EF-Tu.GTP, thereby jamming the conformational switch of EF-Tu upon GTP hydrolysis. We conclude that the mutations result in two separate mechanisms of resistance to kirromycin. The first inhibits access of the antibiotic to its binding site on EF-Tu.GTP. A second mechanism exists on the ribosome, when mutant EF-Tu species release kirromycin and polypeptide chain elongation continues.  相似文献   

15.
A fluorescence titration assay was used to detect the effects of various modifications of E.coli elongation factor Tu on the formation of the ternary complex with aminoacyl-tRNAs. The treatment of EF-Tu.GDP with TPCK, an analogue of the 3'terminus of aminoacyl-tRNA, was found to have no influence on the conversion of EF-Tu.GDP to 'active' EF-Tu.GTP, but does decrease the affinity of the activated protein for yeast aminoacyl-tRNA by more than three orders of magnitude. Modification of the elongation factor by limited cleavage with trypsin, leading to the excision of amino acid residues 45-58, has only a minor influence on ternary complex formation. The equilibrium dissociation constant of the ternary complex with this trypsin-treated EF-Tu.GTP and E.coli Phe-tRNA(Phe) is only one order of magnitude higher than that of the ternary complex with native EF-Tu. Mutations in the amino acid residues 222 and 375 of EF-Tu also have little effect on ternary complex formation. Compared with TPCK-treated EF-Tu, the affinities of the two mutant species, designated EF-tuAR and EF-TuBO respectively, for [AEDANS-s2C]Tyr-tRNA(Tyr) are only slightly reduced and in the same range as trypsin-cleaved EF-Tu.  相似文献   

16.
A recombinant chimeric elongation factor containing the region of EF-1 alpha from Sulfolobus solfataricus harboring the site for GDP and GTP binding and GTP hydrolysis (SsG) and domains M and C of Escherichia coli EF-Tu (EcMC) was studied. SsG-EcMC did not sustain poly(Phe) synthesis in either S. solfataricus or E. coli assay system. This was probably due to the inability of the chimera to interact with aa-tRNA. The three-dimensional modeling of SsG-EcMC indicated only small structural differences compared to the Thermus aquaticus EF-Tu in the ternary complex with aa-tRNA and GppNHp, which did not account for the observed inability to interact with aa-tRNA. The addition of the nucleotide exchange factor SsEF-1 beta was not required for poly(Phe) synthesis since the chimera was already able to exchange [(3)H]GDP for GTP at very high rate even at 0 degrees C. Compared to that of SsEF-1 alpha, the affinity of the chimera for guanine nucleotides was increased and the k(cat) of the intrinsic GTPase was 2-fold higher. The heat stability of SsG-EcMC was 3 and 13 degrees C lower than that displayed by SsG and SsEF-1alpha, respectively, but 30 degrees C higher than that of EcEF-Tu. This pattern remained almost the same if the melting curves of the proteins being investigated were considered instead. The chimeric elongation factor was more thermophilic than SsG and SsEF-1 alpha up to 70 degrees C; at higher temperatures, inactivation occurred.  相似文献   

17.
Thesaurin a is one of two protein components of a 42 S ribonucleoprotein particle that is very abundant in previtellogenic oocytes of Xenopus laevis. The primary function of the 42 S particle is the long-term storage of 5 S RNA and aminoacyl-tRNA. Thesaurin a is homologous to eukaryotic elongation factor 1 alpha (EF-1 alpha) and to prokaryotic elongation factor Tu (EF-Tu). Sequence comparison with EF-1 alpha and EF-Tu of different species indicates that thesaurin a is rather distantly related to all eukaryotic elongation factors. In spite of this, the secondary structure of thesaurin a, deduced from hydrophobic cluster analysis, is remarkably similar to that of EF-1 alpha and EF-Tu. The binding and catalytic properties of thesaurin a are also similar but not identical to those of EF-1 alpha. Like EF-1 alpha, purified thesaurin a binds tRNA, GDP, and GTP. Unlike EF-1 alpha, thesaurin a binds discharged tRNA more tightly than charged tRNA, and GTP more tightly than GDP. Thesaurin a also hydrolyzes GTP and catalyzes the mRNA-dependent binding of aminoacyl-tRNA to 80 S ribosomes. The functional properties of the 42 S particle are in general agreement with those of purified thesaurin a. In particular, the 42 S particle contains GTP and efficiently transfers aminoacyl-tRNA to 80 S ribosomes without addition of exogenous elongation factor.  相似文献   

18.
Guanosine 5'-O-(3-thio)triphosphate (GTP gamma S) is a good analog of GTP in the reactions leading to the formation of a peptide bond in protein biosynthesis. It forms binary and ternary complexes with elongation factor Tu (EF-Tu), and with EF-Tu and aminoacyl-tRNA (aa-tRNA). In addition, it stimulates aa-tRNA binding to ribosomes. Although GTP gamma S hydrolysis is more than three orders of magnitude slower than GTP hydrolysis, both reactions are dependent on the formation of a noncovalent complex (RS X TC) between mRNA-programmed ribosomes and ternary complex, and the complexes resulting from that hydrolysis are intermediates in peptide formation. The rate of dissociation of the ribosome X EF-Tu X GTP gamma S X aa-tRNA complex was determined from the rate of labeled peptide formation in the presence of an unlabeled ternary complex chase. This rate (2.2 X 10(-3) s-1) is similar to that determined previously (Thompson, R.C., and Karim, A.M. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 4922-4926) from the progress of GTP gamma S hydrolysis. The effects of temperature and polycation concentration on this rate constant and that for GTP gamma S hydrolysis are reported. The rate constants measured are consistent with a kinetic rather than thermodynamic limit on the accuracy of the aa-tRNA selection in vivo.  相似文献   

19.
The Escherichia coli protein synthesis initiation factor IF2 is a member of the large family of G-proteins. Along with translational elongation factors EF-Tu and EF-G and translational release factor RF-3, IF2 belongs to the subgroup of G-proteins that are part of the prokaryotic translational apparatus. The roles of IF2 and EF-Tu are similar: both promote binding of an aminoacyl-tRNA to the ribosome and hydrolyze GTP. In order to investigate the differences and similarities between EF-Tu and IF2 we have created point mutations in the G-domain of IF2, Thr445 to Cys, Ile500 to Cys, and the double mutation. Threonine 445 (X1), which corresponds to cysteine 81 in EF-Tu, is well conserved in the DX1X2GH consensus sequence that has been proposed to interact with GTP. The NKXD motif, in which X is isoleucine 500 in IF2, corresponds to cysteine 137 in EF-Tu, and is responsible for the binding of the guanine ring. The recombinant mutant proteins were expressed and tested in vivo for their ability to sustain growth of an Escherichia coli strain lacking the chromosomal copy of the infB gene coding for IF2. All mutated proteins resulted in cell viability when grown at 42 degrees C or 37 degrees C. However, Thr445 to Cys mutant showed a significant decrease in the growth rate at 25 degrees C. The mutant proteins were overexpressed and purified. As observed in vivo, a reduced activity at low temperature was measured when carrying out in vitro ribosome dependent GTPase and stimulation of ribosomal fMet-tRNAfMet binding.  相似文献   

20.
We have investigated the formation of the aa-tRNA X EF-Tu X GTP ternary complex spectroscopically by monitoring a fluorescence change that accompanies the association of EF-Tu X GTP with Phe-tRNAPhe-F8, a functionally active analogue of Phe-tRNAPhe with a fluorescein moiety covalently attached to the s4U-8 base. With this approach, the protein-nucleic acid interaction could be examined by direct means and at equilibrium. The fluorescence emission intensity of each Phe-tRNAPhe-F8 increased by 36-55% upon association with EF-Tu X GTP, depending on the solvent conditions. Thus, when Phe-tRNAPhe-F8 was titrated with EF-Tu X GTP, the extent of ternary complex formation was determined from the increase in emission intensity. A nonlinear least-squares analysis of the titration data yielded a dissociation constant of 0.85 nM for the ternary complex in 50 mM N-(2-hydroxyethyl)piperazine-N'-2-ethanesulfonic acid (pH 7.6), 10 mM MgCl2, and 50 mM NH4Cl, at 6 degrees C. The delta H degrees of this interaction, determined by the temperature dependence of Kd, was -16 kcal/mol; the delta S degrees was therefore -16 cal mol-1 deg-1 at 6 degrees C in this buffer. In a more physiological polycation-containing solvent ("polymix"), the Kd was 4.7 nM. The ionic strength dependence of ternary complex formation showed that a minimum of two salt bridges and a substantial nonelectrostatic contribution are involved in the binding of aa-tRNA to EF-Tu. The affinities of unmodified aa-tRNAs for EF-Tu X GTP were determined by their abilities to compete with the fluorescent aa-tRNA for binding to the protein.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号