首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

Structural determinants of DNA bending of different types have been studied by theoretical conformational analysis of duplexes. Their terminal parts were fixed either in an ordinary low-energy B-like conformation or in “anomalous” conformations with a narrowed minor groove typical of An tracts. The anomalous conformations had different negative tilt angles (up to about zero), different propeller twists and minor groove widths. Calculations have been performed for DNA fragments AnTm, TnAm, AnGCTm, AnCGTm, TmGCAn, TmCGAn which are the models of the junction of two anomalous structures on An and Tm tracts. On the AT step of the AnTm fragment the minor groove can be easily narrowed so that a whole unbent fragment of anomalous structure is formed on An Tm. According to our energy estimates, there should not be any reliable bending on AnTm. In contrast, in all other cases there was a pronounced roll-like bending into the major groove in the chemical symmetry region. Calculations of the junction between the anomalous and ordinary B-like structure for GnTm and CnAm have shown that there is an equilibrium bending with a tilt component towards the chain having the anomalous structure at the 5′-end. From our calculations it is impossible to determine precisely the direction of bending, though it can be suggested that the roll component of bending might be directed towards the major groove. The anomalous structure is the main reason of bending; alternations of pyrimidines and purines can modulate the value and the direction of equilibrium bending (only the value in the case of self-complemantary fragments).

The results are consistent with the experimental data and promote a better understanding of the problem of DNA bending.  相似文献   

2.
Chemical determinants of DNA bending at adenine-thymine tracts   总被引:10,自引:0,他引:10  
H S Koo  D M Crothers 《Biochemistry》1987,26(12):3745-3748
DNA fragments having homopolymeric adenine-thymine tracts phased with the helix screw are known to be bent. According to our working model, adenine-thymine tracts adopt a polymorphic structure (H-DNA), and juxtaposition of H-DNA with B-DNA results in bending at the junction between the two structures. We incorporated different base analogues in addition to the four ordinary bases into oligonucleotides; ligated multimers of oligonucleotide duplexes were run on polyacrylamide gels. By comparison of gel mobility data for different sequences, we identified factors both necessary and irrelevant for bending, corresponding to the formation of H-DNA. The 5-methyl group on pyrimidines is not essential, and the 2-amino group on purines interferes with the formation of H-DNA, either because it provides a third H bond between the bases or because it alters water structure in the minor groove. The strong base stacking of A may be an important contributing factor to stabilization of the anomalous DNA structure responsible for bending.  相似文献   

3.
New insights into the structure of An tracts and B'-B' bends in DNA   总被引:4,自引:0,他引:4  
Energy calculations suggest that the currently available NOE distance constraints for An tracts in DNA are incapable of distinguishing between structures with a narrowed minor groove arising from a large propeller twist with a small inclination or from a small propeller twist with a large negative inclination. Furthermore, analysis of published data, together with energy estimations, strongly argue against bifurcated hydrogen bonding between A and T residues being the cause of the anomalous structural properties of An tracts. A conformational analysis of the B'-B' junction has been performed in which a single variable base pair has been inserted between two regions of B' structure. We have calculated low-energy structures for AnGAn,AnCAn,AnTAn,AnCTn, and TnCAn duplexes, where the An and Tn tracts were fixed in the anomalous B' conformation. Upon optimization, all these structures were found to contain a pronounced roll-like bending into the major groove at the site of the insertion. The important factors in the formation of these B'-B' bends are the destruction of the B' conformation and the concomitant widening of the minor groove at the junction region in order to reduce minor groove interstrand base clashes and improve interstrand stacking energy. If the B' conformation has strong negative inclination, the improved intrastrand stacking energy also contributes to the bending. In calculations of duplexes with An and Tn tracts in the B conformation instead of B', the bending disappears.  相似文献   

4.
Helical phasing between DNA bends and the determination of bend direction.   总被引:11,自引:1,他引:10  
The presence and location of bends in DNA can be inferred from the anomalous mobility of DNA fragments or protein-DNA complexes during electrophoresis in polyacrylamide gels. Direction of bending is not so easily determined. We show here that a protein-induced bend, when linked to a protein-independent DNA bend by a segment of variable length, exhibits an electrophoretic mobility that varies in a sinusoidal manner with the length of the linker. Mobility minima occur once for each addition to the linker of one helical turn of DNA. Since minima should occur when two bends reinforce one another, the direction of one bend relative to the other can be determined from the distances between the two centers of bending at which minima occur. Our results strongly support the idea that the A5-6 tracts in kinetoplast DNA bend towards the minor groove while the bend at the recombination site of the gamma delta resolvase (binding site I of the gamma delta res site) bends towards the major groove.  相似文献   

5.
The hydration shell of several conformations of the polynucleotides poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) has been simulated using the Monte Carlo method (Metropolis sampling). Calculations have shown that the structure of the hydration shell of the minor groove greatly depends on its width. In conformations with a narrowed minor groove, the first layer of the hydration shell of this groove has only one molecule per nucleotide pair that forms H bonds with purine N3 of one pair and pyrimidine O2 of the next pair. The second layer of the hydration shell of such conformations contains molecules that form H bonds between two adjacent molecules of the first layer. The probability of formation of hydration spine is about 20% while the bridges of the first layer are formed with a probability of about 70%. In the first layer of the minor groove of the B-DNA conformation with wide minor groove there are approximately two water molecules per base pair that form H bonds with purine N3 or pyrimidine O2 and with the sugar ring oxygen of the adjacent nucleotide. The probability of simultaneous H bonding of a water molecule with N3 (or O2) and O of sugar ring is about 30%. The results of simulation suggest that hydration spine proposed for the narrowed minor groove of oligonucleotide crystals [H. R. Drew, and R. E. Dickerson (1981) Journal of Molecular Biology, Vol. 151, pp. 535-556] can be formed in fibers of poly(dA).poly(dT), poly(dA).poly(dU), and poly(dA-dI).poly(dT-dC) as well as in DNA fragments of these sequences in solution.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Bending and flexibility of kinetoplast DNA   总被引:10,自引:0,他引:10  
S D Levene  H M Wu  D M Crothers 《Biochemistry》1986,25(14):3988-3995
We have evaluated the extent of bending at an anomalous locus in DNA restriction fragments from the kinetoplast body of Leishmania tarentolae using transient electric dichroism to measure the rate of rotational diffusion of DNA fragments in solution. We compare the rate of rotational diffusion of two fragments identical in sequence except for circular permutation, which places the bend near the center in one case and near one end of the molecule in the other. Hydrodynamic theory was used to conclude that the observed 20% difference in rotational relaxation times is a consequence of an overall average bending angle of 84 +/- 6 degrees between the end segments of the fragment that contains the bending locus near its center. If it is assumed that bending results from structural dislocations at the junctions between oligo(dA).oligo(dT) tracts and adjacent segments of B DNA, a bend angle of 9 +/- 0.5 degrees at each junction is required to explain the observations. The extent of bending is little affected by ionic conditions and is weakly dependent on temperature. Comparison of one of the anomalous fragments with an electrophoretically normal control fragment leads to the conclusion that they differ measurably in apparent stiffness, consistent with a significantly increased persistence length or contour length in the kinetoplast fragments.  相似文献   

7.
The 1 A resolution X-ray crystal structures of Mg(2+) and Ca(2+) salts of the B-DNA decamers CCAACGTTGG and CCAGCGCTGG reveal sequence-specific binding of Mg(2+) and Ca(2+) to the major and minor grooves of DNA, as well as non-specific binding to backbone phosphate oxygen atoms. Minor groove binding involves H-bond interactions between cross-strand DNA base atoms of adjacent base-pairs and the cations' water ligands. In the major groove the cations' water ligands can interact through H-bonds with O and N atoms from either one base or adjacent bases, and in addition the softer Ca(2+) can form polar covalent bonds bridging adjacent N7 and O6 atoms at GG bases. For reasons outlined earlier, localized monovalent cations are neither expected nor found.Ultra-high atomic resolution gives an unprecedented view of hydration in both grooves of DNA, permits an analysis of individual anisotropic displacement parameters, and reveals up to 22 divalent cations per DNA duplex. Each DNA helix is quite anisotropic, and alternate conformations, with motion in the direction of opening and closing the minor groove, are observed for the sugar-phosphate backbone. Taking into consideration the variability of experimental parameters and crystal packing environments among these four helices, and 24 other Mg(2+) and Ca(2+) bound B-DNA structures, we conclude that sequence-specific and strand-specific binding of Mg(2+) and Ca(2+) to the major groove causes DNA bending by base-roll compression towards the major groove, while sequence-specific binding of Mg(2+) and Ca(2+) in the minor groove has a negligible effect on helix curvature. The minor groove opens and closes to accommodate Mg(2+) and Ca(2+) without the necessity for significant bending of the overall helix.The program Shelxdna was written to facilitate refinement and analysis of X-ray crystal structures by Shelxl-97 and to plot and analyze one or more Curves and Freehelix output files.  相似文献   

8.
C Cera  D M Crothers 《Biochemistry》1989,28(9):3908-3911
We have examined the comparative reactivity of mitomycin cross-linking sites in DNA molecules either free in solution or complexed with Escherichia coli CAP protein. Sites in the region to which the protein is bound show strongly variable cross-linking by the drug. The reactivity of a CpG site located where the minor groove is narrowed by bending toward the protein was decreased by about 4-fold, compared to free DNA. The reactivity of a site placed so that the minor groove is widened by the bend was reduced by about 25%, and the reactivity of a (CpG)3 sequence facing primarily away from the protein was reduced 25-fold by CAP binding. These results support the view that local DNA structure plays a critical role in determining the efficiency of cross-linking.  相似文献   

9.
The 5-methyl group of thymidine residues protrudes into the major groove of double helical DNA. The structural influence of this exocyclic substituent has been examined using a PCR-made 160 bp fragment in which thymidine residues were replaced with uridine residues. We show that the dT-->dU substitution and the consequent deletion of the methyl group affects the cleavage of DNA by deoxyribonuclease I and micrococcal nuclease. Analysis of the DNase I cleavage sites, in terms of di and trinucleotides, indicates that homopolymeric tracts of d(AT) become significantly more susceptible to DNase I cleavage when uridine is substituted for thymidine residues. The results indicate that removal of the thymidine methyl groups from the major groove at AT tracts induces structural perturbations that transmit into the opposite minor groove, where they can be detected by endonuclease probing. In contrast, DNase I footprinting experiments with different mono and bis-intercalating drugs reveal that dT-->dU substitution does not markedly affect sequence-specific drug-DNA recognition in the minor or major groove of the double helix. The consequences of demethylation of thymidine residues are discussed in terms of changes in the minor groove width connected to variations in the flexibility of DNA and the intrinsic curvature associated with AT tracts. The study identifies the methyl group of thymine as an important molecular determinant controlling the width of the minor groove and/or the flexibility of the DNA.  相似文献   

10.
11.
(+)-CC -1065 is biologically potent DNA-reactive antitumor antibiotic produced by Streptomyces zelensis. This antibiotic covalently modifies DNA by alkylation of N-3 of a adenine in the minor groove. As a Structural consequence of covalent modification of DNA, the helix axis id bent into the minor groove. The drug-induced bending of DNA has similarities to intrinsic. A-tract bending and the 3′ adenine of A-tracts shows a unique reactivity to alkylation by (+) -CC-1065. Upon covalent modification of A-tracts, the magnitude of bending is increased and helix is stiffened. Using high-field NMR, hydroxyl-radical footprinting and gel electrophoresis, the molecular basis for the high reactivity of the bonding sequence 5′ - AGTTA* (an asterisk indicates the covalent modification site) to (+)-CC-1065 has been shown to involve the inherent conformational flexibility of this sequence. Furthermore, these studies also demonstrate that after alkylation the drug-induced bending is focused over the TT region. By analogy with the junction bend model for A-tracts, a ‘truncated junction bend model’ is proposed for this structure. Last, the application of (+)-CC-1065 entrapped/induced bending of DNA as a probe for the Sp1-induced bending of the 21-base-pair repeat an Mu transpose bending of the att L3 sequence is described.  相似文献   

12.
Abstract

A theoretical study of the optimal conformations of nucleic acid oligomers containing tracts of AT base pairs is presented. The oligomers are studied in isolation and complexed with netropsin, a minor groove binding ligand. The flexibility of the oligomers and of their complexes is calculated by adiabatic mapping with respect to the total winding angle. The results of this study show that in uncomplexed oligomers the dinucleotide junctions AA, AT and TA have very different structural parameters and different responses to winding stress. The TA junction is clearly the most flexible and is the principal site for accommodating the imposed overwinding. Complexation by netropsin leads to two important effects: firstly, the three junctions adopt more uniform structures, the largest changes again being observed for TA, secondly, the differences in flexibility as a function of sequence are strongly attenuated.  相似文献   

13.
A theoretical study of the optimal conformations of nucleic acid oligomers containing tracts of AT base pairs is presented. The oligomers are studied in isolation and complexed with netropsin, a minor groove binding ligand. The flexibility of the oligomers and of their complexes is calculated by adiabatic mapping with respect to the total winding angle. The results of this study show that in uncomplexed oligomers the dinucleotide junctions AA, AT and TA have very different structural parameters and different responses to winding stress. The TA junction is clearly the most flexible and is the principal site for accommodating the imposed overwinding. Complexation by netropsin leads to two important effects: firstly, the three junctions adopt more uniform structures, the largest changes again being observed for TA, secondly, the differences in flexibility as a function of sequence are strongly attenuated.  相似文献   

14.
Bending by the DNA A-tracts constitutes a contentious issue, suggesting deficiencies in the physics employed so far. Here, we inquire as to the importance in this bending of many-body polarization effects on the electrostatic interactions across their narrow minor groove. We have done this on the basis of the findings of Jarque and Buckingham who developed a procedure based on a Monte Carlo simulation for two charges of the same sign embedded in a polarizable medium. Remarkably, the present analysis reveals that for compact DNA conformations, which result from dynamic effects, an overall attractive interaction operates between the phosphate charges; this interaction is especially strong for the narrow minor groove of the A-tracts, suggesting a tendency for DNA to bend toward this groove. This tendency is in agreement with the conclusions of electrophoretic and NMR solution studies. The present analysis is also consistent with the experimental observations that the minor groove is much more easily compressible than the major groove and the bending propensity of the A-tracts is greatly reduced at “premelting” temperatures. By contrast, the dielectric screening model predicts a repulsion between the phosphate charges and is not consistent with the aforementioned bending tendency or experimental observations.  相似文献   

15.
The results of the search for low-energy conformations of poly(dA).poly(dT) and of the poly(dA).poly(dT) "complex" with the spine of hydration similar to that found by Dickerson and co-workers (Kopka, M.L., Fratini, A.V., Drew, H.R. and Dickerson, R.E. (1983) J. Mol. Biol. 163, 129-146) in the minor groove of the CGCGAATTCGCG crystals are described. It is shown that the existence of such a spine in the minor groove of poly(dA).poly(dT) is energetically favourable. Moreover, the spine of hydration makes the polynucleotide conformation similar to the poly(dA).poly(dT) structure in fibers and to the conformation of the central part of CGCGAATTCGCG in crystals; it also acquires features characteristic of the structure of poly(dA).poly(dT) and DNA oligo(dA)-tracts in solution. It is shown that the existence of the TpA step in conformations characteristic of the poly(dA).poly(dT) complex with the spine of hydration is energetically unfavourable (in contrast to the ApT step) and therefore this step should result in destabilization of the spine of hydration in the DNA minor groove. Thus, it appears that the spine of hydration as described by Dickerson and co-workers is unlikely to exist in the poly d(A-T).poly d(A-T) structure. The data obtained permit us to interpret a large body of experimental facts concerning the unusual structure and properties of poly(dA).poly(dT) and oligo(dA)-tracts in DNA both in fibers and in solution. The results provide evidence of the existence of the minor groove spine of hydration both in fibers and in solution on A/T tracts of DNA which do not contain the TpA step. The spine plays an active role in the formation of the anomalous conformation of these tracts.  相似文献   

16.
Møllegaard NE  Nielsen PE 《Biochemistry》2003,42(28):8587-8593
DNA curvature is affected by elevated temperature and dehydrating agents such as 2-methyl-2,4-pentanediol (MPD) (used in crystallization). This effect of MPD has been ascribed to a specific distortion of the structure of adenine tracts (A-tracts), probably through a deformation of the characteristic narrow minor groove. Uranyl photoprobing indicates that a narrowed minor groove is present in all A/T regions containing four or more A/T base pairs. Consequently, this technique may be employed to study conformational changes in other A/T-rich sequences than pure A-tracts. In this study we use uranyl photoprobing to demonstrate that the effect of elevated temperature and MPD is analogous on both "normal" and curve-inducing A/T-rich sequences. The results therefore indicate that under these conditions the minor groove is widened in all A/T sequences and not only in pure A-tracts as previously suggested. Thus, the rather subtle structural difference of AT regions and A-tracts in nonbent DNA versus A-tracts in bent DNA may be quantitative rather than qualitative; i.e., the structure is more persistent and/or rigid in bent DNA.  相似文献   

17.
A method is proposed to measure global bending in DNA and RNA structures. It relies on a properly defined averaging of base-fixed coordinate frames, computes mean frames of suitably chosen groups of bases and uses these mean frames to evaluate bending. The method is applied to DNA A-tracts, known to induce considerable bend to the double helix. We performed atomistic molecular dynamics simulations of sequences containing the A4T4 and T4A4 tracts, in a single copy and in two copies phased with the helical repeat. Various temperature and salt conditions were investigated. Our simulations indicate bending by roughly 10° per A4T4 tract into the minor groove, and an essentially straight structure containing T4A4, in agreement with electrophoretic mobility data. In contrast, we show that the published NMR structures of analogous sequences containing A4T4 and T4A4 tracts are significantly bent into the minor groove for both sequences, although bending is less pronounced for the T4A4 containing sequence. The bending magnitudes obtained by frame averaging are confirmed by the analysis of superhelices composed of repeated tract monomers.  相似文献   

18.
The bending of kinetoplast DNA from Crithidia fasciculata is thought to be related to the periodic distribution of AA or TT cluster sequences. The sensitivity to DNase I of the two strands of this DNA was analyzed at nucleotide resolution by sequencing gel electrophoresis. The effect on the DNase I cleavage pattern of two drugs, ditercalinium and distamycin, that are able to remove bending was analyzed. The same analysis was done on a pBR 322 DNA fragment of random sequence as a control. The periodic distribution of the AA or TT clusters in the bent DNA fragment was first analyzed by computing the autocorrelation function of the AA or TT clusters in the bent DNA fragment. It is shown that the AT tracts are on average 10.5 base pairs apart. This value is almost identical with that of the B-DNA helix pitch in solution [10.5 (Wang, 1979); 10.6 +/- 0.1 (Rhodes & Klug, 1980)]. To reveal the periodic pattern of DNase I cleavage on this bent DNA, alone or in presence of drugs, the cross correlation between the different bands obtained from DNAse I cleavage and the presence of AA or TT sequences was computed. This shows that GC and mixed sequences are the most sensitive regions. These data also suggest that there is a periodic fluctuation in the width of the minor groove in the bent fragment. Ditercalinium and distamycin alter the DNase I cutting pattern of the bent DNA fragment but in an inverse fashion.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Introduction of a T-A or pyrimidine-purine step into a straight and rigid A-tract can cause a positive roll deformation that kinks the DNA helix at that step. In CCTTTAAAGG, the central T-A step has an 8.6 degrees bend toward the major groove. We report the structural analysis of CCTTTAAAGG and a comparison with 25 other representative crystal structures from the NDB containing at least four consecutive A or T bases. On average, more local bending occurs at the disruptive T-A step (8.21 degrees ) than at an A-T step (5.71 degrees ). In addition, A-tracts containing an A-T step are more bent than are pure A-tracts, and hence A-A and A-T steps are not equivalent. All T-A steps examined exhibit positive roll, bending towards the major groove, while A-T steps display negative roll and bend slightly towards the minor groove. This illustrates how inherent negative and positive roll are, respectively, at A-T and T-A steps within A-tracts. T-A steps are more deformable, showing larger and more variable deformations of minor groove width, rise, cup, twist, and buckle. Standard deviations of twist, rise, and cup for T-A steps are 6.66 degrees, 0.55 A, and 15.90 degrees, versus 2.28 degrees, 0.21 A, and 2.99 degrees for A-T steps. Packing constraints determine which local values of these helical parameters an individual T-A step will adopt. For instance, with CCTTTAAAGG and three isomorphous structures, CGATTAATCG, CGATATATCG, and CGATCGATCG, crystal packing forces lead to a series of correlated changes: widened minor groove, large slide, low twist, and large rise. The difference in helical parameters between A-T steps lying within A-tracts, versus A-T steps within alternating AT sequences, demonstrates the importance of neighboring steps on the conformation of a given dinucleotide step.  相似文献   

20.
Circular dichroism (CD) and immunochemical measurements have been used to examine conformational properties of COOH-terminal fragments 121-316, 206-316 and 225(226)-316 of thermolysin, and to compare these properties to those of native thermolysin and thermolysin S, the stable partially active two-fragment complex composed of fragments 5-224(225) and 225(226)-316. In aqueous solution at neutral pH, all the COOH-terminal fragments attain a native-like conformation, as judged both by the content of secondary structure deduced from far-ultraviolet CD spectra and by the recognition of rabbit polyclonal antibodies specific for the COOH-terminal region in native thermolysin. The three fragments showed reversible cooperative unfolding transitions mediated by both heat and guanidine hydrochloride (Gdn X HCl). The phase transition curves were analyzed for Tm (temperature of half-denaturation) and Gibbs free energies (delta GD) of unfolding from native to denatured state. The observed order of thermal stability is 225(226)-316 less than or equal to 206-316 less than 121-316 less than thermolysin S less than thermolysin. The ranking of delta GD values for the three fragments correlates with the size of each fragment. Competitive binding studies by radioimmunoassay using 14C-labeled thermolysin and affinity purified antibodies specific for native antigenic determinants in segment 206-316 of native thermolysin indicate that the COOH-terminal fragments adopt native-like conformations which are in equilibrium with non-native conformations. These equilibria are shifted towards the native state as the fragment size increases from 225(226)-316, to 206-316, to 121-316. Fragment 225(226)-316, when combined with fragment 5-224(225) in the thermolysin S complex, adopts a more stable native-like conformation and becomes much more antigenic. It has been shown that the degree of antigenicity of COOH-terminal fragments towards thermolysin antibodies correlates directly with their conformational stability. The results of this study are discussed in relation to the recently proposed correlation between antigenicity and segmental mobility of globular proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号