首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of heat-shock proteins and glucose-regulated proteins in 9L rat brain tumor cells can be differentially elicited by sodium arsenite, cadmium chloride, zinc chloride, copper sulfate, sodium fluoride, and L-azetidine-2-carboxylic acid. The kinds of stress protein induced by the above chemicals varied considerably, mainly determined by the nature and the concentration of the chemicals, as well as the treatment protocols. In addition, at the concentrations where stress proteins can be induced, the above chemicals were able to suppress general protein synthesis and were cytotoxic. Enhanced phosphorylation of a protein with an apparent molecular weight of 65 kDa was detected during the induction of stress proteins except in azetidine treatments during which uptake of phosphate by the cells was impaired after prolonged incubation. The phosphate moiety on the 65 kDa phosphoprotein appeared to be alkaline-stable and two-dimensional gel electrophoresis revealed that the phosphoprotein resolved into four isoforms with isoelectric points ranging from 5.1 to 5.6. Enhanced phosphorylation of the same protein was also detected in heat-shocked and withangulatin A-treated 9L cells in which stress proteins were induced. It is suggested that this phosphoprotein may be a common target for heat stress response-stimulated phosphorylation and important in the further metabolic responses of the cell to stress. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Withangulatin A induced cell rounding up and the morphological alteration resulted from the reorganization of all of the major cytoskeletal components, i.e., vimentin, tubulin, and actin, as revealed by immunofluorescence techniques. When the withangulatin A-treated cells changed to a round-up morphology, vimentin intermediate filaments were found to be collapsed and clustered around the nucleus. The alteration was accompanied by characteristic changes of vimentin molecules, including augmentation of phosphorylation, retardation of electrophoretic mobility, and decrease in detergent extractability. The levels of vimentin phosphorylation were augmented by 2.5- and 1.8-fold in cells incubated with 50 μM withangulatin A for 1 and 3 h, respectively. The electrophoretic mobility of vimentin was partially retarded in cells treated with withangulatin A for 1 h at 10 μM and a completely upshift mobility was observed after 5 h treatment at 50 μM. In addition, vimentin molecules became less extractable by nonident P-40 after the cells were treated with withangulatin A and this effect was dose dependent. The decrease in solubility of vimentin was accompanied by the redistribution of HSP72 into the detergent nonextractable fraction and these two events were well correlated. Our results suggest that withangulatin A induced the modification of vimentin, which resulted in the alteration of cell morphology and redistribution of intracellular HSP72, an event that may play an important role in the induction of heat-shock response.  相似文献   

3.
The human heat-shock protein multigene family comprises several highly conserved proteins with structural and functional properties in common, but which vary in the extent of their inducibility in response to metabolic stress. We have isolated and characterized a novel human HSP70 cDNA, HSP70B' cDNA, and its corresponding gene sequence. HSP70B' cDNA hybrid-selected an mRNA encoding a more basic 70 kDa heat-shock protein that both the major stress-inducible HSP70 and constitutively expressed HSC70 heat-shock proteins, which in common with other heat-shock 70 kDa proteins bound ATP. The complete HSP70B' gene was sequenced and, like the major inducible HSP70 gene, is devoid of introns. The HSP70B' gene has 77% sequence similarity to the HSP70 gene and 70% similarity to HSC70 cDNA, with greatest sequence divergence towards the 3'-terminus. The HSP70B' gene represents a functional gene, as indicated by Northern-blot analysis with specific oligonucleotides, hybrid-selected translation with a specific 3' cDNA sequence and S1 nuclease protection experiments. In contrast with HSP70 mRNA, which is present at low concentrations in HeLa cells and readily induced by heat or CdCl2 treatment in both fibroblasts and HeLa cells, HSP70B' mRNA was induced only at higher temperature and showed no basal expression. The differences in patterns of induction may be due to the special features of the promoter region of the HSP70B' gene.  相似文献   

4.
A monoclonal antibody (13D3) has been developed that recognizes a 71 kilodalton (71 kDa) protein on two-dimensional immunoblots of proteins extracted from a mixture of mouse spermatogenic cells (mainly pachytene spermatocytes and spermatids). This protein was shown by immunoblotting and adenosine triphosphate (ATP)-binding characteristics to be identical to a 71 kDa mouse heat-shock cognate (hsc) protein, hsc71, present in 3T3 cells. Along with a 70 kDa heat-shock inducible protein (hsp70), and a 74 kDa heat-shock cognate protein (hsc74), hsc71 is a product of the mouse HSP70 multigene family. Although antibody 13D3 reacted strongly with hsc71, it reacted only faintly with hsp70 in 3T3 cells, and not at all with hsc74 or a germ cell-specific hsp70-like protein (P70) on immunoblots of mixed germ cells. Antibody 13D3 is unique among known antibodies in its pattern of reaction with these heat-shock proteins. In immunofluorescence studies on isolated germ cells, 13D3 reacted uniformly with the cytoplasm of pachytene spermatocytes, round spermatids, and residual bodies, but only with the midpiece of spermatozoa. Antibody 13D3 recognizes other proteins in addition to hsc71 on two-dimensional immunoblots of condensing spermatids and spermatozoa. Two of the proteins (70 kDa/pI 6.4 and 70 kDa/pI 6.5) were present in condensing spermatids and spermatozoa, and another protein (69 kDa/pI 7.0) was detected only in spermatozoa. The new proteins also were recognized by monoclonal antibody 7.10, which reacts specifically with hsp70, hsc71, hsc74, and P70. Although [35S]methionine was incorporated into the new proteins in condensing spermatids, hsc71, hsc74, and P70 were not labeled. These results suggest that unique heat-shock proteins are synthesized late in spermatogenesis.  相似文献   

5.
The effects of a temperature shift-up and various metabolic inhibitors on the protein synthesis of an endosymbiont isolated from the pea aphid were studied. The syntheses of at least three major polypeptides were stimulated transiently immediately after a temperature shift-up, and treatment with ethanol and heavy metals (Cd2+ and As2+). One of these proteins, the 63 kDa heat-shock protein (63-kDa HSP), was immunoprecipitated with antiserum raised against symbionin, which is selectively synthesized by the endosymbiont harbored by the aphid bacteriocytes. The 63 kDa heat-shock protein has a molecular mass of 800 kDa and is more acidic than symbionin. It was also shown that symbionin is subject to phosphorylation in vivo and in vitro after a temperature shift-up. It was thought likely that forms of environmental stress such as heat shock and metabolic inhibitors stimulate the synthesis of a phosphorylated form of symbionin. It was also suggested that the in vitro phosphorylation of symbionin is due to its own catalytic activity. Since symbionin is a homolog of the Escherichia coli groEL protein, a stress protein, it is likely that the endosymbiont suffers stress when harbored by the bacteriocytes and responds in a similar manner to environmental stress when outside these cells.  相似文献   

6.
Cycloheximide (CHM) or puromycin (PUR) added for 2 h before heating at 43 degrees C followed by either PUR or CHM during heat greatly protected cells from heat killing. This protection increased with inhibition of protein synthesis. Since treatment with a drug both before and during heating was required for heat protection, and since one drug could be exchanged for the other after the 2-h pretreatment without affecting the heat protection, a common mode of action involving inhibition of protein synthesis is suggested for the two drugs. Drug treatment reduced the synthesis of heat-shock proteins (HSPs) as studied by one-dimensional gel electrophoresis by 80-98% relative to 37 degrees C untreated controls. Synthesis of large molecules (greater than 30 kDa) was preferentially inhibited by PUR but not by CHM. Also for CHM, but not for PUR treatment, a 42 kDa band appeared along with a great reduction in the 43 kDa actin band during CHM treatment at both 37 and 43 degrees C. Furthermore, during CHM or PUR treatment, incorporation of [35S]methionine into HSP families 70, 87, or 110 was not increased relative to incorporation into total protein. However, synthesis of the 70 kDa HSP family was selectively suppressed when cells were incubated at 37 degrees C after CHM treatment, but when cells were incubated at 37 degrees C after treatment at 43 degrees C with CHM, synthesis of the 70 kDa HSP family resumed. When cells were labeled for 3 days, there was no preferential accumulation or turnover of HSP families during heating with or without CHM. Therefore, heat protection caused by treatment with CHM or PUR apparently involves a common mode of action not associated with changes in either total levels or synthesis of HSP families during drug treatment before and during heating. The significance of the changes observed in the synthesis of the HSP 70 family after heat is unknown. As thermotolerance developed during 5 h at 42 degrees C without drugs, synthesis of HSP families 70, 87, and 110, as studied with one-dimensional gels, increased 1.4-fold relative to synthesis of total protein, but compared to HSP families in cells labeled for 5 h at 37 degrees C incorporation was reduced by 40%. The increase of unique HSPs, if studied with two-dimensional gels, would probably be much greater.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

7.
2D-electrophoresis performed as described by O'-Farrel has revealed clear-cut differences in the pattern of proteins synthesized in the cells of wild-type flies and in the cells of ts-lethal. The cells of the mutant studied after heat-shock exhibit not only the lack of HSP83 and HSP35 but also the absence of a few of the heat-shock proteins belonging to the HSP70 group. Moreover, in the cells of the mutant an intensive synthesis of a protein with mol. weight 72 KDa was observed after heat-shock. This protein belongs to highly abundant heat-shock cognate proteins (HSCP) which are usually not induced by temperature elevation.  相似文献   

8.
A portion of the RNA genome of beet yellows closterovirus (BYV) has been sequenced encompassing a complete long open reading frame (ORF) potentially encoding a 65 kDa protein. The sequence of this putative protein was strikingly similar to those of HSP70-related heat shock proteins. The counterparts of all the eight segments strongly conserved in HSP70s could be confidently identified in the BYV 65 kDa protein. It is suggested that some of these segments might be the ATP-binding site(s) and that, similarly to the heat shock proteins, the 65 kDa is probably ATP-binding. Generally, however, the divergence between the 65 kDa sequence and the sequences of the HSP70s was much more pronounced than that between any two members of the latter family, allowing a clearer delineation of clusters of conserved residues that might be crucial for protein function. It is suggested that these observations will be helpful in functional dissection of the proteins of the HSP70 family. Analysis of the sequence of a portion of the ORF found upstream from the 65 kDa ORF showed that the C-terminal domain of the encoded protein could be an RNA-dependent RNA polymerase closely related to those of tricornaviruses, a family of RNA plant viruses with three component genomes.  相似文献   

9.
Trichophyton rubrum is an anthropophilic fungus causing up to 90% of chronic cases of dermatophytosis. To characterize T. rubrum proteins at the molecular level, we established a cDNA library of this pathogen. Here we describe a recombinant cDNA clone identical to eukaryotic 70kDa heat-shock proteins (HSPs). Western blot analysis using an anti HSP70 monoclonal antibody detected a recombinant fusion protein in Escherichia coli transformed with the expression vector containing the cloned cDNA insert. Southern blot analysis of T. rubrum genomic DNA detected no other members of the HSP70 gene family. Further analysis revealed the presence of two introns within the ORF of the HSP70 gene. In Northern blot analysis, the cDNA clone was hybridized to a RNA species of about 3.5kb which was constitutively expressed by cells cultured at 27 degrees C and was strongly up-regulated after culture at 37 degrees C. In summary, we have cloned the first member of the HSP family of dermatophytes and characterized it as a member of the Dnak subfamily of 70kDa HSPs.  相似文献   

10.
We have characterized the heat-shock response of the nosocomial pathogen Enterococcus faecium. The growth of E. faecium cells was analyzed at different temperatures; little growth was observed at 50 degrees C, and no growth at 52 degrees C or 55 degrees C. In agreement, a marked decrease of general protein synthesis was observed at 52 degrees C, and very light synthesis was detected at 55 degrees C. The heat resistance of E. faecium cells was analyzed by measuring the survival at temperatures higher than 52 degrees C and, after 2 h of incubation, viable cells were still observed at 70 degrees C. By Western blot analysis, two heat-induced proteins were identified as GroEL (65 kDa) and DnaK (75 kDa). Only one isoform for either GroEL or DnaK was found. The gene expression of these heat-shock proteins was also analyzed by pulsed-labeled experiments. The heat-induced proteins showed an increased rate of synthesis during the first 5 min, reaching the highest level of induction after 10 min and returning to the steady-state level after 20 min of heat treatment.  相似文献   

11.
By means of confocal laser scanning microscopy and indirect fluorescence experiments we have examined the behavior of heat-shock protein 70 (HSP70) within the nucleus as well as of a nuclear matrix protein (Mr = 125 kDa) during a prolonged heat-shock response (up to 24 h at 42°C) in HeLa cells. In control cells HSP70 was mainly located in the cytoplasm. The protein translocated within the nucleus upon cell exposure to hyperthermia. The fluorescent pattern revealed by monoclonal antibody to HSP70 exhibited several changes during the 24-h-long incubation. The nuclear matrix protein showed changes in its location that were evident as early as 1 h after initiation of heat shock. After 7 h of treatment, the protein regained its original distribution. However, in the late stages of the hyperthermic treatment (17-24 h) the fluorescent pattern due to 125-kDa protein changed again and its original distribution was never observed again. These results show that HSP70 changes its localization within the nucleus conceivably because it is involved in solubilizing aggregated polypeptides present in different nuclear regions. Our data also strengthen the contention that proteins of the insoluble nucleoskeleton are involved in nuclear structure changes that occur during heat-shock response.  相似文献   

12.
Thermotolerance and the heat-shock response in Candida albicans   总被引:3,自引:0,他引:3  
At elevated temperatures, yeast cells of Candida albicans synthesized nine heat-shock proteins (HSPs) with apparent molecular masses of 98, 85, 81, 76, 72, 54, 34, 26 and 18 kDa. The optimum temperature for the heat-shock response was 45 degrees C although HSPs were detected throughout the range 41-46 degrees C. Protein synthesis was not observed in cells kept at 48 degrees C. Yeast cells survived exposure to an otherwise lethal temperature of 55 degrees C when they had previously been exposed to 45 degrees C. The thermotolerance induced during incubation at 45 degrees C required protein synthesis, since protection was markedly reduced by trichodermin. Mercury ions induced a set of three stress proteins, one of which corresponded in size to an HSP, and cadmium ions evoked one stress protein seemingly unrelated to the HSPs observed after temperature shift.  相似文献   

13.
The HSPs (heat‐shock proteins) of the 70‐kDa family, the constitutively expressed HSC70 (cognate 70‐kDa heat‐shock protein) and the stress‐inducible HSP70 (stress‐inducible 70‐kDa heat‐shock protein), have been reported to be actively secreted by various cell types. The mechanisms of the release of these HSPs are obscure, since they possess no consensus secretory signal sequence. We showed that baby hamster kidney (BHK‐21) cells released HSP70 and HSC70 in a serum‐free medium and that this process was the result of an active secretion of HSPs rather than the non‐specific release of the proteins due to cell death. It was found that the secretion of HSP70 and HSC70 is independent of de novo protein synthesis. BFA (Brefeldin A) did not inhibit the basal secretion of HSPs, indicating that the secretion of HSP70 and HSC70 from cells occurs by a non‐classical pathway. Exosomes did not contribute to the secretion of HSP70 and HSC70 by cells. MBC (methyl‐β‐cyclodextrin), a substance that disrupts the lipid raft organization, considerably reduced the secretion of both HSPs, indicating that lipid rafts are involved in the secretion of HSP70 and HSC70 by BHK‐21 cells. The results suggest that HSP70 and HSC70 are actively secreted by BHK‐21 cells in a serum‐free medium through a non‐classical pathway in which lipid rafts play an important role.  相似文献   

14.
Cultured mouse lymphocytes respond to a brief incubation at an elevated temperature (41-43 degrees C) with the new and (or) enhanced synthesis of a select group of polypeptides (known as heat-shock proteins, HSPs) having relative molecular masses of 110, 100, 90, 70, and 65 kilodaltons (kDa). Expression of these HSPs is dependent on new RNA synthesis. Because the synthesis of any particular HSP is dependent on the temperature and the length of time cells remain at a particular elevated temperature, synthesis of each HSP is not necessarily coordinated with the synthesis of the other HSPs. Cultured mouse lymphocytes treated with arsenite or ethanol exhibit new and (or) enhanced synthesis of HSPs with molecular masses of 110, 90, 70, and 65 kDa but do not exhibit enhanced synthesis of the 100-kDa HSP. Short-term concurrent exposure of mouse lymphocytes to an elevated temperature and a level of ethanol, which individually do not induce detectable HSP synthesis, results in the pronounced synthesis of HSPs similar to those seen following exposure to higher levels of either stress applied separately. Thus, in this study we demonstrate that hyperthermia and ethanol stress can act synergistically to affect a dramatic change in the gene expression of mouse lymphocytes.  相似文献   

15.
Yamashita M  Hirayoshi K  Nagata K 《Gene》2004,336(2):207-218
A shift from 28 to 37 degrees C in the incubation temperature of a culture of the platyfish fibroblast cell line, EHS cells (platyfish fibroblast cell line), induced a set of stress proteins. A two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) analysis showed that the cells expressed three genetically distinct forms of heat-shock protein 70 (HSP70) family proteins: heat-inducible forms of HSP70, the constitutively expressed heat-shock cognate protein 70 (HSC70) and its phosphorylated isoform, and the glucose-regulated protein 78 (GRP78). Three different clones encoding two major isoforms of heat-inducible HSP70, platyfish HSP70-1 and HSP70-2, and of the HSC70 were isolated from a platyfish cDNA library. We compared the deduced amino acid sequences of the platyfish HSP70 and HSC70 proteins with those of other vertebrates. Phylogenetic analysis showed that vertebrate HSP70 could be classified into four cluster groups: (a) fish HSP70, with two isoforms of heat-inducible HSP70 in fish, fish HSP70-1 and HSP70-2; (b) the mammalian testis-specific HSP70-related protein HST70; (c) the mammalian heat-inducible HSP70B'; and (d) the mammalian major histocompatibility complex (MHC)-linked HSP70, including the MHC-linked heat-inducible HSP70 and the testis-specific HSP70-related protein. These findings suggest that vertebrate HSP70 was derived from a single ancestral HSP70 gene during vertebrate evolution and that multiple copies of heat-inducible HSP70 were probably evolved during genetic divergence in fish and higher vertebrates.  相似文献   

16.
A cell line derived from the tailfin of the marine teleost yellowtail fish Seriola quinqueradiata was established to examine cellular temperature regulation in an ectothermic animal. Three cytosolic members of the HSP70 family, heat-shock cognate proteins HSC70-1, HSC70-2 and heat-shock protein HSP70, were isolated from cultured yellowtail cells as stress-responsive biomarkers. Expression of hsp70 was heat-inducible, in contrast to the hsc70-1 gene product, which was expressed constitutively. In addition, expression of hsc70-2 was only induced under severe heat-shock conditions. Subcellular fractionation and immunocytochemistry showed localization of HSC70/HSP70 in the lysosomes, indicating that chaperone-mediated autophagy is induced by heat shock. Thus, chaperone-mediated autophagy is assisted by HSC70/HSP70, and heat-inducible expression of the genes encoding these proteins may be responsible for survival and adaptation under heat-shock conditions in fish cells.  相似文献   

17.
Ca2+-calmodulin (CaM)-binding proteins in rat testes were characterized by assays for CaM-binding activity using the CaM-overlay method on transblots of electrophoresed gels and purification by gel-filtration, ion exchange, and adsorption chromatographies. A major CaM-binding protein complex (CaMBP) was identified and found to be comprised of three proteins with molecular masses 110, 100, and 70 kDa. Amino acid sequence analyses of lysylendopeptidase digests from these proteins indicated that all of the constituents of CaMBP are very similar to the members of the heat-shock protein family, i.e., the 110-kDa protein is similar to the APG-2/94 kDa rat ischemia-responsive protein, the 100-kDa protein is similar to the rat counterpart of the mouse APG-1/94 kDa osmotic stress protein, and the 70-kDa protein is similar to the rat testis-specific major heat-shock protein (HSP70). Immunohistochemistry using anti-CaMBP and anti-CaM antibodies demonstrated that CaMBP was co-localized with CaM in the cytoplasm of pachytene spermatocytes and nuclei of round spermatids. In addition, CaMBP, but not CaM, was localized at a high level in the residual bodies of elongated spermatids. The possible relevance of CaMBP to regulation of cell cycle progression and spermatogenesis is discussed in this paper.  相似文献   

18.
19.
The relationship of heat-induced inhibition of protein synthesis (HIIPS) and thermotolerance, the transient ability to survive otherwise lethal heat treatments, was studied in HA-1 Chinese hamster fibroblasts exposed to various treatments. A mild heatshock or exposure to sodium arsenite induced a refractoriness to HIIPS, while exposure to the amino acid analog of proline, azetidine, did not. The development and decay of refractoriness to HIIPS after exposure to heat or sodium arsenite paralleled in the increase and decrease of the rate of synthesis of the heat-shock proteins (HSP), and was associated with neither the persistence of elevated levels of HSP nor the persistence of the thermotolerant state. Refractoriness to HIIPS was not associated with the elevated synthesis of HSP in the presence of amino acid analogs regardless of the mode of induction, indicating a requirement for functional HSP for the effect. The refractoriness to HIIPS was also found in heat-resistant variants of HA-1 cells that express elevated levels of hsp 70, implicating a role for this protein in this process. Our observation establish an unique biological effect associated with the period of elevated synthesis of the HSP, especially the hsp 70.  相似文献   

20.
Expression of antisense RNA against eukaryotic translation initiation factor 4E (eIF-4E) in HeLa cells causes a reduction in the levels of both eIF-4E and eIF-4 gamma (p220) and a concomitant decrease in the rates of both cell growth and protein synthesis (De Benedetti, A., Joshi-Barve, S., Rinker-Schaffer, C., and Rhoads, R. E. (1991) Mol. Cell Biol. 11, 5435-5445). The synthesis of most proteins in the antisense RNA-expressing cells (AS cells) is decreased, but certain proteins continue to be synthesized. In the present study, we identified many of these as stress-inducible or heat shock proteins (HSPs). By mobilities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by reactivity with monoclonal antibodies generated against human HSPs, four of these were shown to be HSP 90, HSP 70, HSP 65, and HSP 27. The steady-state levels of HSP 90, 70, and 27 were elevated in relation to total protein in AS cells. Pulse labeling and immunoprecipitation indicated that HSP 90 and HSP 70 were synthesized more rapidly in AS cells than in control cells. The accelerated synthesis of HSPs in the AS cells was not due, however, to increased mRNA levels; the levels of HSP 90 and 70 mRNAs either remained the same or decreased after induction of antisense RNA expression. Actin mRNA, a typical cellular mRNA, was found on high polysomes in control cells but shifted to smaller polysomes in AS cells, as expected from the general decrease in translational initiation caused by eIF-4E and eIF-4 gamma depletion. HSP 90 and 70 mRNAs showed the opposite behavior; they were associated with small polysomes in control cells but shifted to higher polysomes in AS cells. These results demonstrate that HSP mRNAs have little or no requirement in vivo for the cap-recognition machinery and suggest that these mRNAs may utilize an alternative, cap-independent mechanism of translational initiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号