首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Yan Z  Wang J  Lu J 《Biophysical chemistry》2002,99(3):199-207
Viscosities of glycine, DL-alpha-alanine, DL-alpha-amino-n-butyric acid, DL-valine and DL-leucine have been determined in water-sodium acetate mixtures at 298.15 and 308.15 K. The viscosity B-coefficients have been calculated. The corresponding activation free energies (Deltamu(2)(0 not equal )) for viscous flow have been evaluated with the help of the Feakins equation. The contributions of the charged end group (NH(3)(+),COO(-)) and CH(2) groups of the amino acids to B-coefficient and Deltamu(2)(0 not equal) have been also determined using the linear correlation between B-coefficient or Deltamu(2)(0 not equal) and the number of carbon atoms in alkyl chains of the amino acids. The results have been interpreted in the light of the solute-solvent interactions in aqueous media.  相似文献   

2.
Bai TC  Yan GB 《Carbohydrate research》2003,338(24):2921-2927
Viscosity and density data for the system of heptanedioic acid dissolved in aqueous sucrose solution at temperature range from 288.15 to 313.15 K have been measured. The viscosity B-coefficients for heptanedioic acid in aqueous sucrose solution has been calculated. The effect of temperature and sucrose concentration on the B-coefficients is discussed. On the basis of the Feakins equation, the activation parameters (Deltamu3++, DeltaH3++, DeltaS3++, DeltaG12(0)++, DeltaH12(0)++ and DeltaS12(0)++) for viscous flow of the solution have been evaluated, together with the Gibbs energy of transfer for the solute from the ground state solvent to the hypothetical viscous transition state solvent (DeltaG3++(1-1')). The effect of sucrose concentration and temperature on the activation parameters has been discussed.  相似文献   

3.
Extents of adsorption of bovine serum albumin from aqueous solution to the surface of alumina, silica, carbon and chromium powder have been studied as function of time for various values of bulk protein concentration, pH, ionic strength and temperature. The rates of adsorption in all cases have been observed to fit in the first order rate equation with two different rate constants Ka1 and Ka2. Effects of addition of SDS, CTAB and neutral salts on values of Ka1 and Ka2 have also been studied. Using Arrhenius equation the activation energy values Ea1 and Ea2 have been evaluated from the values of Ka1 and Ka2 at three different temperatures, respectively. The corresponding values of enthalpy of activation (delta H*), entropy of activation (delta S*), and free energy of activation (delta G*) have been evaluated using Eyring's equation of absolute reaction rate. The mechanism of protein adsorption has been discussed in the light of basic principles of absolute reaction rate. It has been found that for Ka1 the delta H*1 greater than T delta S*1 and for Ka2 T delta S*2 greater than H*2, i.e. the anchorage and binding of protein to the surface are enthalpy controlled processes whereas the surface denaturation as well as rearrangement and folding is an entropy controlled process. The role of diffusion on rate of adsorption has also been discussed.  相似文献   

4.
Protein-ligand binding and enzyme activity have been shown to be regulated by solvent viscosity, induced by the addition of viscous cosolvents. This was indirectly interpreted as an effect on protein dynamics. However, viscous cosolvents might affect dynamic, e.g., viscosity, as well as thermodynamic properties of the solution, e.g., activity of solution components. This work was undertaken to examine the effect of viscous cosolvent on the structural dynamics of proteins and its correlation with dynamic and thermodynamic solution properties. For this purpose we studied the effect of viscous cosolvent on the specific ultrasonic absorption, delta mu, of bovine serum albumin, at pH = 7.0 and at 21 degrees C, and frequency range of 3-4 MHz. Ultrasonic absorption (UA) directly probes protein dynamics related to energy dissipation processes. It was found that the addition of sucrose, glycerol, or ethylene glycol increased the BSA delta mu. This increase correlates well with the solvent viscosity, but not with the cosolvent mass concentration, activity of the solvent components, dielectric constant, or the hydration of charged groups. On the grounds of these results and previously reported findings, as well as theoretical considerations, we propose the following mechanism for the solvent viscosity effect on the protein structural fluctuations, reflected in the UA: increased solvent viscosity alters the frequency spectrum of the polypeptide chain movements; attenuating the fast (small amplitude) movements, and enhancing the slow (large amplitude) ones. This modulates the interaction strength between the polypeptide and water species that "lubricates" the chain's movements, leading to larger protein-volume fluctuation and higher ultrasonic absorption. This study demonstrates that solvent viscosity is a regulator of protein structural fluctuations.  相似文献   

5.
Liu Z  Li C 《Biophysical chemistry》2008,138(3):115-119
This work studied the self-assembling (crystallizing) behaviour of amino acids in the absence of solvent and additives (by sublimation and deposition in vacuum), instead of from aqueous solution. It is found that the hydrophilicity/hydrophobicity of side-chains can significantly affect the crystallization of amino acids in the absence of solvent. Crystal structures of amino acids having hydrophobic side-chains (L-valine, L-leucine, L-isoleucine and l-methionine) obtained from sublimation are the same with those obtained from aqueous solution. New polymorphs for six amino acids are thought to have been obtained, based on X-ray diffraction and IR data for three of them (L-tyrosine, L-Phyenylalanine and L-tryptophan), and just IR data for the other three (L-alanine, L-proline and L-threonine).  相似文献   

6.
P W Staskus  W C Johnson 《Biochemistry》1988,27(5):1522-1527
The chiroptical transition of hyaluronic acid (HA) in aqueous-organic solvent has been investigated by circular dichroism (CD) spectroscopy into the vacuum ultraviolet region. The CD of HA changes dramatically, monitoring a cooperative transition as the dielectric constant of an aqueous solution is reduced by adding organic solvents. This transition results in a high-intensity CD band at 188 nm, indicating an ordered structure in the mixed solvent. Heating HA in the mixed solvent also causes a cooperative transition, reducing the CD to that found for the polymer in aqueous solution. In contrast, heating HA in aqueous solution results in small, noncooperative changes in the CD spectrum. This indicates an unordered structure in aqueous solution. The CD as the dielectric constant is reduced exhibits isodichroic points, showing that there are only two environments for chromophores contributing to the CD. This is confirmed by singular value decomposition of CD spectra recorded as a function of solvent composition, which shows the spectra to contain only two principal components. The data describing the thermally induced transition of HA in mixed solvent are not consistent with infinite cooperativity. The van't Hoff relation yields thermodynamic parameters for the conformational transition in terms of the cooperative unit of -60 kcal mol-1 for delta H degrees and -180 eu mol-1 for delta S degrees.  相似文献   

7.
The previously described cyclic mu opioid receptor-selective tetrapeptide Tyr-c[D-Cys-Phe-D-Pen]NH2 (Et) (JOM-6) was modified at residues 1 and 3 by substitution with various natural and synthetic amino acids, and/or by alteration of the cyclic system. Effects on mu and delta opioid receptor binding affinities, and on potencies and efficacies as measured by the [35S]-GTPgammaS assay, were evaluated. Affinities at mu and delta receptors were not influenced dramatically by substitution of Tyr1 with conformationally restricted phenolic amino acids. In the [35S]-GTPgammaS assay, all of the peptides tested exhibited a maximal response comparable with that of fentanyl at the mu opioid receptor, and all showed high potency, in the range 0.4-9nM. However, potency changes did not always correlate with affinity, suggesting that the conformation required for binding and the conformation required for activation of the opioid receptors are different. At the delta opioid receptor, none of the peptides were able to produce a response equivalent to that of the full delta agonist BW 373,U86 and only one had an EC50 value of less than 100nM. Lastly, we have identified a peptide, D-Hat-c[D-Cys-Phe-D-Pen]NH2 (Et), with high potency and > 1,000-fold functional selectivity for the mu over delta opioid receptor as measured by the [35S]-GTPgammaS assay.  相似文献   

8.
The effect of methanol on the folding of staphylococcal nuclease has been investigated. Equilibrium thermal unfolding transitions were monitored by fluorescence emission. The transition was very sensitive to the presence of methanol (at pH 7.0), the Tm decreased from above 50 degrees C for aqueous solution to below 0 degree C for 70% methanol. The transitions were fully reversible and conformed to two-state behavior. A linear relationship was observed between the hydrophobicity of the solvent and both the Tm and the change in delta G for unfolding. The effect of pH on the transition in 50% methanol at 0 degree C was essentially the same as for aqueous solution, with a cooperative transition in the vicinity of apparent pH (pH*) 4. The unfolding transition was determined as a function of guanidine thiocyanate in aqueous and 50% methanol solvents. The midpoints of the transitions were 0.30 and 0.20 M, respectively, at 2.1 degrees C. The kinetics of folding at 0 degree C were compared in aqueous, 50% methanol and 0.30 M guanidine thiocyanate solvents, by monitoring changes in the tryptophan fluorescence intensity. Triphasic kinetics for refolding in both aqueous and 50% methanol solutions were observed in stopped-flow experiments. In both solvent systems the slowest phase is ascribed to proline isomerization. The kinetics of refolding were monitored at subzero temperatures in 50% methanol at pH* 7.0 in manual mixing experiments. Biphasic kinetics were observed at temperatures between 0 and -35 degrees C. A third, faster phase, was inferred from the missing amplitude. The energies of activation were 20.0 and 17.2 kcal mol-1, respectively, for the two slower phases. At -33.8 degrees C, the observed pseudo first-order rate constants were 1.2 x 10(-3) and 2.1 x 10(-5) s-1. At temperatures above -35 degrees C, the sum of the observed amplitudes was essentially constant at 70-75% of the expected total amplitude. At lower temperatures the amplitude of the refolding reaction decreased, and the native state was not formed (unless the temperature was increased), due to the formation of a trapped intermediate state. This intermediate has circular dichroism and fluorescence properties consistent with a compact state with some molten globule characteristics.  相似文献   

9.
Integral enthalpies of solution at low concentrations of several amino acids and peptides in 2 and 6M urea solutions have been determined at 25 and 35°C. These data have been used to derive the enthalpies of transfer (at 25 and 35°C) and heat capacities of transfer (at 30°C) of these amino acids and peptides from water to aqueous urea solutions. Furthermore, the enthalpies of transfer and heat capacities of transfer per CH2 group and per peptide group ? CONH? have also been estimated. These results show that while the enthalpies and heat capacities of transfer per CH2 group are positive and negative, respectively, the reverse is true for ? CONH? group. The implications of these results in the mechanism of the denaturation of proteins by urea are discussed.  相似文献   

10.
Fukuyama T  Matsuo K  Gekko K 《Chirality》2011,23(Z1):E52-E58
The electronic circular dichroism (ECD) spectra of three L-hydroxy acids (L-lactic acid, (+)-(S)-2-hydroxy-3-methylbutyric acid, and (-)-(S)-2-hydroxyisocaproic acid) were measured down to 160 nm in aqueous solution using a vacuum-ultraviolet ECD spectrophotometer. To assign the two positive peaks around 210 and 175 nm and the one negative peak around 190 nm in the observed spectra, the ECD spectrum of L-lactic acid was calculated using time-dependent density functional theory (DFT) for the optimized structures by DFT and a continuum model. The observed ECD spectrum was successfully reproduced as the average spectrum for four optimized structures with seven water molecules that localized around the COO(-) and OH groups of L-lactic acid. The positive peak around 210 nm and the negative peak around 185 nm in the calculated spectrum were attributable to the nπ* transition of the carboxyl group, with the latter peak also being influenced by the ππ* transition of the carboxyl group; however, the positive peak around 165 nm involved unassignable higher energy transitions. The comparison of the calculated ECD spectra for L-lactic acid and L-alanine revealed that the network with loose hydrogen bonding around the COO(-) and OH groups is responsible for the flexible conformation of hydroxy acids and complicated side-chain dependence of ECD spectra relative to amino acids.  相似文献   

11.
The accumulation of deoxyribonucleic acid (DNA), ribonucleic acid (RNA), and protein was followed in cultures of Escherichia coli B/r during exponential growth in different media and for 2 h after a nutritional shift-up from succinate minimal medium (growth rate [mu1] = 0.67 doublings per h) to glucose plus amino acids medium (mu2 = 3.14 doublings per h). During postshift growth of the culture, the amounts of RNA (R), DNA (D), and protein (P) increased such that the ratios of the increments (delta R/delta P; delta D/delta P) were constants (k1, k2). This implies that the rates of accumulation of nuclei1:k2:1. These constants change from their preshift value to their final postshift value (i.e., k1 and k2) within a few minutes after the shift. k1 is a function of the activity of ribosomes, whereas k2 is related to the initiation of rounds of DNA replication. These parameters and the observed change in the doubling time of RNA (= mu2/mu1) were used to derive kinetic equations that describe the accumulation of DNA, RNA, protein, and cell mass during the 2- to 3-h transition period after a shift-up. The calculated kinetics agree closely with the observed kinetics.  相似文献   

12.
NaOH/urea aqueous solution has been used as a solvent for chitin for the first time. Effects of this solvent composition and temperature on the solubility and stability of chitin solution were studied with an optical microscope, from which 8 wt% NaOH/4 wt% urea concentrations were deduced as suitable and −20 °C as the appropriate temperature. The original and regenerated chitin were characterized by viscosity, elemental analysis, FI-IR and X-RD analysis, and the effect of solvent composition and temperature on chitin structure was investigated. It was inferred that 8 wt% NaOH/4 wt% urea solvent under low temperature adventitiously has little effect on chitin structure and the urea is of benefit to the stability of chitin solution. In addition, the rheological properties suggested that chitin aqueous solution in high concentration is a pseudoplastic fluid and that chitin aqueous solution in low concentrations is a Newtonian fluid. This chitin aqueous solution is sensitive to temperature and will transform it to a gel when temperature increases.  相似文献   

13.
Wang J  Yan Z  Zhuo K  Lu J 《Biophysical chemistry》1999,80(3):179-188
The apparent molar volumes V(2,phi) have been determined for glycine, DL-alpha-alanine, DL-alpha-amino-n-butyric acid, DL-valine and DL-leucine in aqueous solutions of 0.5, 1.0, 1.5 and 2.0 mol kg(-1) sodium acetate by density measurements at 308.15 K. These data have been used to derive the infinite dilution apparent molar volumes V(0)(2,phi) for the amino acids in aqueous sodium acetate solutions and the standard volumes of transfer, Delta(t)V(0), of the amino acids from water to aqueous sodium acetate solutions. It has been observed that both V(0)(2,phi) and Delta(t)V(0) vary linearly with increasing number of carbon atoms in the alkyl chain of the amino acids. These linear correlations have been utilized to estimate the contributions of the charged end groups (NH(3)(+), COO(-)), CH(2) group and other alkyl chains of the amino acids to V(0)(2,phi) and Delta(t)V(0). The results show that V(0)(2,phi) values for (NH(3)(+), COO(-)) groups increase with sodium acetate concentration, and those for CH(2) are almost constant over the studied sodium acetate concentration range. The transfer volume increases and the hydration number of the amino acids decreases with increasing electrolyte concentrations. These facts indicate that strong interactions occur between the ions of sodium acetate and the charged centers of the amino acids. The volumetric interaction parameters of the amino acids with sodium acetate were calculated in water. The pair interaction parameters are found to be positive and decreased with increasing alkyl chain length of the amino acids, suggesting that sodium acetate has a stronger dehydration effect on amino acids which have longer hydrophobic alkyl chains. These phenomena are discussed by means of the co-sphere overlap model.  相似文献   

14.
The Yersinia protein tyrosine phosphatase (PTPase) Yop51, a C235R point mutation (Yop51*), and a protein lacking the first 162 amino acids at the NH2 terminus (Yop51*delta 162) have been overexpressed in Escherichia coli and purified to homogeneity through the use of CM Sephadex C25 cation exchange chromatography followed by Sephadex G-100 gel filtration. Greater than 50 mg of homogeneous Yop51* and Yop51*delta 162 can be obtained from a single liter of bacterial culture, whereas the same procedure yields only 5 mg of pure Yop51. Large, diffraction-quality crystals have been obtained for Yop51*delta 162. Size exclusion chromatography, sedimentation equilibrium, and enzyme concentration dependence experiments have established that the Yersinia PTPases exist and function as monomers in solution. Yop51 and Yop51* display identical UV, CD, and fluorescence spectra and have identical kinetic and structural stability properties. These full-length Yersinia PTPases have 31% alpha-helix, an emission maximum of 342 nm, a turn-over number of 1200 s-1 at pH 5.0, 30 degrees C, and an unfolding delta G value of 6 kcal/mol at 25 degrees C. Yop51*delta 162 has very similar kinetic and fluorescence characteristics to the full-length molecules, whereas its CD and UV spectra show noticeable differences due to the elimination of 162 NH2-terminal residues. The Yersinia PTPases are by far the most active PTPases known, and their kinetic parameters are extremely sensitive to the ionic strength of reaction medium.  相似文献   

15.
The helix propagation and N-cap propensities of the amino acids have been measured in alanine-based peptides in 40 volume percent trifluoroethanol (40% TFE) to determine if this helix-stabilizing solvent uniformly affects all amino acids. The propensities in 40% TFE are compared with revised values of the helix parameters of alanine-based peptides in water. Revision of the propensities in water is the result of redefining the capping statistical weights and evaluating the helix nucleation constant with N-capping explicitly included in the helix-coil model. The propagation propensities of all amino acids increase in 40% TFE relative to water, but the increases are highly variable. In water, all beta-branched and beta-substituted amino acids are helix breakers. In 40% TFE, the propagation propensities of the nonpolar amino acids increase greatly, leaving charged and neutral polar, beta-substituted amino acids as helix breakers. Glycine and proline are strong helix breakers in both solvents. Free energy differences for helix propagation (delta delta G) between alanine and other nonpolar amino acids are twice as large in water as predicted from side-chain conformational entropies, but delta delta G values in 40% TFE are close to those predicted from side-chain entropies. This dependence of delta delta G on the solvent points to a specific role of water in determining the relative helix propensities of the nonpolar amino acids. The N-cap propensities converge toward a common value in 40% TFE, suggesting that differential solvation by water contributes to the diversity of N-cap values shown by the amino acids.  相似文献   

16.
By measuring the freezing-point depression for dilute, aqueous solutions of all water-soluble amino acids, we test the hypothesis that nonideality in aqueous solutions is due to solute-induced water structuring near hydrophobic surfaces and solute-induced water destructuring in the dipolar electric fields generated by the solute. Nonideality is expressed with a single solute/solvent interaction parameter I, calculated from experimental measure of delta T. A related parameter, I(n), gives a method of directly relating solute characteristics to solute-induced water structuring or destructuring. I(n)-values correlate directly with hydrophobic surface area and inversely with dipolar strength. By comparing the nonideality of amino acids with progressively larger hydrophobic side chains, structuring is shown to increase with hydrophobic surface area at a rate of one perturbed water molecule per 8.8 square angstroms, implying monolayer coverage. Destructuring is attributed to dielectric realignment as described by the Debye-Hückel theory, but with a constant separation of charges in the amino-carboxyl dipole. By using dimers and trimers of glycine and alanine, this destructuring is shown to increase with increasing dipole strength using increased separation of fixed dipolar charges. The capacity to predict nonideal solution behavior on the basis of amino acid characteristics will permit prediction of free energy of transfer to water, which may help predict the energetics of folding and unfolding of proteins based on the characteristics of constituent amino acids.  相似文献   

17.
Protein phosphorylation is one of the major signal transduction mechanisms for controlling and regulating intracellular processes. Phosphorylation of specific hydroxylated amino acid side chains (Ser, Thr, Tyr) by protein kinases can activate numerous enzymes; this effect can be reversed by the action of protein phosphatases. Here we report ab initio (HF/6-31G* and Becke3LYP/6-31G*) and semiempirical (PM3) molecular orbital calculations pertinent to the ion pair formation of the phosphorylated amino acids with the basic side chains of Lys and Arg. Methyl-, ethyl-, and phenylphosphate, as well as methylamine and methylguanidinium were used as model compounds for the phosphorylated and basic amino acids, respectively. Phosphorylated amino acids were calculated as mono- and divalent anions. Our results indicate that the PSer/PThr ion pair interaction energies are stronger than those with PTyr. Moreover, the interaction energies with the amino group of Lys are generally more favorable than with the guanidinium group of Arg. The Lys amino groups form stable bifurcated hydrogen bonded structures; while the Arg guanidinium group can form a bidentate hydrogen bonded structure. Reasonable values for the interaction free energies in aqueous solution were obtained for some complexes by the inclusion of a solvent reaction field in the computation (PM3-SM3).  相似文献   

18.
The mechanism for transition state stabilization in the activation of amino acids by aminoacyl-tRNA synthetases is proposed. We carried out a quantum mechanical study on system modelling the attack of the amino acid carboxylate on the alpha-phosphate group of ATP. The activation barrier is reduced by improved hydrogen binding between a phosphoryl oxygen atom and a proton donor group of the enzyme. The relative stabilization of the transition state is found to be about 8 kcal/mol. On the basis of results obtained for the reaction in gas phase, in aqueous solution and in the active site the nature of the enzyme catalysis is discussed.  相似文献   

19.
Structural requirements for the activation of transducin by rhodopsin have been studied by site-specific mutagenesis of bovine rhodopsin. A variety of single amino acid replacements and amino acid insertions and deletions of varying sizes were carried out in the two cytoplasmic loops CD (amino acids 134-151) and EF (amino acids 231-252). Except for deletion mutant delta 137-150, all the mutants bound 11-cis-retinal and displayed normal spectral characteristics. Deletion mutant delta 236-239 in loop EF caused a 50% reduction of transducin activation, whereas deletion mutant delta 244-249 and the larger deletions in loop EF abolished transducin activation. An 8-amino acid deletion in the cytoplasmic loop CD as well as a replacement of 13 amino acids with an unrelated sequence showed no transducin activation. Several single amino acid substitutions also caused significant reduction in transducin activation. The conserved charged pair Glu-134/Arg-135 in the cytoplasmic loop CD was required for transducin activation; its reversal or neutralization abolished transducin activation. Three amino acid replacements in loop EF (S240A, T243V, and K248L) resulted in significant reduction in transducin activation. We conclude that 1) both the cytoplasmic loops CD and EF are required for transducin activation, and 2) effective functional interaction between rhodopsin and transducin involves relatively large peptide sequences in the cytoplasmic loops.  相似文献   

20.
Zhao H 《Biophysical chemistry》2006,122(3):157-183
This review systematically surveys the viscosity B-coefficients and standard partial molar volumes of amino acids at various temperatures as these data are quite important for interpreting the hydration and other properties of peptides and proteins. The effect of organic solutes and various ions on the viscometric and volumetric properties of amino acids has also been discussed in terms of their kosmotropic ('structure-making') effects on the hydration of amino acids. The comparison of these effects on the amino acid hydration enables us to have a better understanding of the influence of organic solute and salt on the protein stabilization. In addition, the viscometric and volumetric behaviors of amino acid ions (cations and anions) are also summarized because these ions have recently been incorporated as part of novel ionic liquids, which have wide applications in biocatalysis and protein stabilization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号