首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Psoralens bind to DNA noncovalently and upon exposure to near UV (320-400 nm) light produce covalent adducts. Thymidine residues in DNA, especially those at 5'-TpA-3' sequences, are most susceptible to the photochemical reaction. This property of the reaction and the recent advances in oligonucleotide synthesis and separation has enabled us to construct DNA fragments containing psoralen adducts at a specific site. The octanucleotide 5'-TCGTAGCT-3' was photoreacted (in the presence of the complementary strand) with the synthetic psoralen 4'-hydroxymethyl-4,5',8-trimethylpsoralen to obtain oligonucleotides adducted via the furan or pyrone ring at the internal thymine. These modified octanucleotides were ligated to nonmodified oligonucleotides to obtain a 40-base pair DNA fragment containing a psoralen adduct at a central location. The modified fragment having the thymine-furan side 4'-hydroxymethyl-4,5',8-trimethylpsoralen adduct was irradiated with 360 nm of light to produce an interstrand cross-link, and this cross-linked DNA was purified to homogeneity. These uniquely modified DNAs were used as substrates for Escherichia coli ABC excinuclease to determine its incision mechanism unambiguously and to determine the contact sites of the enzyme. ABC excinuclease mediates the cleavage of the 8th and 5th phosphodiester bonds 5' and 3', respectively, to psoralen monoadducts, and the 9th (5') and 3rd (3') phosphodiester bonds to the furan-side thymine of the cross-link. Preliminary DNaseI footprinting studies show that ABC excinuclease protects the whole 40-base pair fragment from DNaseI, and binding of the A and B subunits to the furan side-monoadducted substrate produces two hypersensitive phosphodiester bonds in the vicinity of the 5' incision site of ABC excinuclease.  相似文献   

2.
The preparation of oligodeoxyribonucleoside methylphosphonates derivatized with 3-[(2-aminoethyl)carbamoyl]psoralen [(ae)CP] is described. These derivatized oligomers are capable of cross-linking with single-stranded DNA via formation of a photoadduct between the furan side of the psoralen ring and a thymidine of the target DNA when the oligomer-target duplex is irradiated with 365-nm light. The photoreactions of (ae)CP-derivatized methylphosphonate oligomers with single-stranded DNA targets in which the position of the psoralen-linking site is varied are characterized and compared to results obtained with oligomers derivatized with 4'-[[N-(aminoethyl)amino]methyl]-4,5',8-trimethylpsoralen [(ae)AMT]. It appears that the psoralen ring can stack on the terminal base pair formed between the oligomer and its target DNA or can intercalate between the last two base pairs of the oligomer-target duplex. Oligomers derivatized with (ae)CP cross-link efficiently to a thymidine located in the last base pair (n position) or 3' to the last base pair (n + 1 position) of the target, whereas the (ae)AMT-derivatized oligomers cross-link most efficiently to a thymidine located in the n + 1 position. The results show that both the extent and kinetics of cross-linking are influenced by the location of the psoralen-linking site in the oligomer-target duplex.  相似文献   

3.
Interstrand psoralen cross-links do not introduce appreciable bends in DNA   总被引:6,自引:0,他引:6  
R R Sinden  P J Hagerman 《Biochemistry》1984,23(26):6299-6303
Analysis of the X-ray crystallographic structure of an 8-methoxypsoralen-thymine monoadduct has led to the suggestion that psoralen cross-links would bend DNA by as much as 70 degrees [Peckler, S., Graves, B., Kanne, D., Rapoport, H., Hearst, J. E., & Kim, S.-H. (1982) J. Mol. Biol. 162, 157-172]. DNA can exist in a stably bent configuration in solution as recently demonstrated from analysis of polyacrylamide gel electrophoresis and differential decay of birefringence. Using these techniques, we have investigated the structure of DNA cross-linked with 8-methoxypsoralen and 4,5',8-trimethylpsoralen. The results are not consistent with cross-links introducing any appreciable stable bend in double-stranded DNA molecules. Results suggest that photobound 4,5',8-trimethylpsoralen molecules lengthen DNA by the equivalent of about one base pair per photobound adduct. We have also determined that 4,5',8-trimethylpsoralen cross-links are introduced preferentially into 5'-TA compared to 5'-AT DNA sequences.  相似文献   

4.
The psoralen derivative 4,5',8-trimethylpsoralen was covalently linked to the 5'-terminus of an 18mer oligodeoxyribonucleotide in the course of solid phase synthesis using phosphoroamidite chemistry. The derivative was introduced as a phosphitylation compound in the last cycle of the oligomer synthesis. The reagent was prepared by 4'-chloromethylation of 4,5',8-trimethylpsoralen, introduction of a linker by ethanediol and phosphitylation with chloro-[(beta-cyanoethoxy)-N,N-diisopropylamino]-phosphine. After oxydation and deprotection the 5'-psoralen modified oligodeoxyribonucleotide was characterised by HPLC. Hybridisation of the psoralen-modified oligomer to a complementary single stranded 21mer followed by irradiation at 350 nm revealed a photo-cross-linked double-stranded DNA fragment analysed on denaturing polyacrylamide gels. The cross-link could be reversed upon irradiation at 254nm.  相似文献   

5.
A polypurine tract in the supF gene of bacteriophage lambda (base pairs 167-176) was selected as the target for triple helix formation and targeted mutagenesis by an oligopurine (5'-AGGAAGGGGG-3') containing a chemically linked psoralen derivative (4'-hydroxymethyl-4,5',8-trimethylpsoralen) at its 5' terminus (psoAG10). The thymines at base pairs 166 and 167, a 5'ApT site, were targeted for photomodification. Exposure of the triple helical complex to long wavelength ultraviolet radiation led to the covalent binding of psoAG10 to the targeted region in the supF gene and to the induction of site-specific mutations. We report here experiments to characterize the photomodification of the targeted region of the supF gene in the context of triple helix formation. An electrophoretic mobility-shift assay showed that, at low radiation doses, monoadducts at base pair 166 were the major photoadducts. At higher doses the monoadducts were converted to crosslinks between base pairs 166 and 167. HPLC analysis of enzymatically hydrolyzed photoreaction mixtures was used to confirm the electrophoresis results. A strong strand preference for specific photoadduct formation was also detected.  相似文献   

6.
A novel method for determination of psoralen photo-cross-linking sites in double-stranded DNA is described, which is based on a pronounced inhibition of Bal31 exonuclease activity by psoralen-DNA interstrand cross-links. The results using a 51 base pair fragment of plasmid pUC19 and a 346 base pair fragment of pBR322 show that 5'-TA sequences are preferred cross-linking sites compared to 3'-TA sequences. They also indicate that sequences flanking the 5'-TA site influence the cross-linking efficiency at the site. The DNA photo-cross-linking by 4,5',8-trimethylpsoralen and 8-methoxypsoralen was analyzed, and these two psoralens showed identical site specificity. The 5'-TA preference is rationalized on the basis of the local DNA structure in terms of the pi-pi electronic interaction between the thymines and the intercalated psoralens, as well as on the base tilt angles of the DNA.  相似文献   

7.
Wavelength dependence for the photoreversal of a psoralen-DNA cross-link   总被引:10,自引:0,他引:10  
G D Cimino  Y B Shi  J E Hearst 《Biochemistry》1986,25(10):3013-3020
We report an action spectrum for the photoreversal of a psoralen cross-link joining two self-complementary DNA oligonucleotides. The cross-link was formed between two thymines (T) on opposite strands of the DNA oligomers and 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT). For comparison, we also present an action spectrum for the photoreversal of the isolated diadduct T-HMT-T. The wavelength dependence for the diadduct photoreversal parallels its absorption spectrum. Both the diadduct and the cross-linked DNA can be photoreversed by exposure to light with wavelengths between 240 and 313 nm. We did not observe photoreversal at 334 nm or above. At least two distinct absorption bands appear to contribute to photoreversal. We measured a quantum yield of 0.16 for photoreversal of the isolated diadduct at wavelengths between 240 and 266 nm. For wavelengths above 280 nm, the quantum yield is 0.30. We also observed a preferential photoreversal at the furan end of the psoralen in the T-HMT-T diadduct. In contrast, the cross-linked DNA oligonucleotides preferentially photoreversed at the pyrone end of the psoralen adduct. The rate constant for photoreversal of the cross-linked DNA is larger than that for the isolated diadduct at wavelengths below 300 nm.  相似文献   

8.
Tobacco mosaic virus RNA, forming 40S or 80S initiation complexes with wheat germ ribosomes, was covalently bound to 18S ribosomal RNA by the photoreaction with an RNA cross-linking agent, 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT). Synthetic polyribonucleotide, poly(A, U), with the cap structure m7GpppGmC at the 5'-terminal was also cross-linked to 18S ribosomal RNA in 40S or 80S complexes with ribosomes by the AMT photoreaction. Polyuridylic acid with the same 5'-cap structure, forming 40S complexes but not 80S complexes with ribosomes, was most efficiently cross-linked to 18S ribosomal RNA by the psoralen photoreaction. These results suggest that the interactions between mRNA and 18S rRNA are not necessarily of strict complementarity but occur during formation of the complexes in eukaryotes. The 40S complexes would be then converted to 80S complexes in the presence of the AUG initiation codon or AUG-like triplets containing A and U on the polyribonucleotide chains which interact with 18S ribosomal RNA.  相似文献   

9.
Antisense oligodeoxyribonucleoside methylphosphonates targeted against various regions of mRNA or precursor mRNA are selective inhibitors of mRNA expression both in cell-free systems and in cells in culture. The efficiency with which methylphosphonate oligomers interact with mRNA, and thus inhibit translation, can be considerably increased by introducing photoactivatable psoralen derivatives capable of cross-linking with the mRNA. Oligonucleoside methylphosphonates complementary to coding regions of rabbit alpha- or beta-globin mRNA were derivatized with 4'-(aminoalkyl)-4,5',8-trimethylpsoralens by attaching the psoralen group to the 5' end of the oligomer via a nuclease-resistant phosphoramidate linkage. The distance between the psoralen group and the 5' end of the oligomer can be adjusted by changing the number of methylene groups in the aminoalkyl linker arm. The psoralen-derivatized oligomers specifically cross-link to their complementary sequences on the targeted mRNA. For example, an oligomer complementary to nucleotides 56-67 of alpha-globin mRNA specifically cross-linked to alpha-globin mRNA upon irradiation of a solution of the oligomer and rabbit globin mRNA at 4 degrees C. Oligomers derivatized with 4'-[[N-(2-amino-ethyl)amino]methyl]-4,5',8-trimethylpsoralen gave the highest extent of cross-linking to mRNA. The extent of cross-linking was also determined by the chain length of the oligomer and the structure of the oligomer binding site. Oligomers complementary to regions of mRNA that are sensitive to hydrolysis by single-strand-specific nucleases cross-linked to an approximately 10-30-fold greater extent than oligomers complementary to regions that are insensitive to nuclease hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Y B Shi  J E Hearst 《Biochemistry》1987,26(13):3792-3798
The photoreactions of HMT [4'-(hydroxymethyl)-4,5',8-trimethylpsoralen] monoadducts in double-stranded DNA have been studied with complementary oligonucleotides. The HMT was first attached to the thymidine residue in the oligonucleotide 5'-GAAGCTACGAGC-3' as either a furan-side monoadduct or a pyrone-side monoadduct. The HMT-monoadducted oligonucleotide was then hybridized to the complementary oligonucleotide 5'-GCTCGTAGCTTC-3' and irradiated with monochromatic light. In the case of the pyrone-side monoadducted oligonucleotide, photoreversal was the predominant reaction, and very little cross-link was formed at all wavelengths. The course of the photoreaction of the double-stranded furan-side monoadducted oligonucleotide was dependent on the irradiation wavelength. At wavelengths below 313 nm, both photoreversal and photo-cross-linking occurred. At wavelengths above 313 nm, photoreversal of the monoadduct could not be detected, and photo-cross-linking occurred efficiently with a quantum yield of 2.4 X 10(-2).  相似文献   

11.
12.
13.
A method has been developed to attach 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen to the 5 position of thymine bases during solid-phase oligonucleotide synthesis. UV irradiation of triplex-forming oligonucleotides (TFOs) containing internally attached psoralens produces photoadducts at TpA steps within target duplexes, thus relaxing the constraints on selection of psoralen target sequences. Photoreaction of TFOs containing two psoralens, located at the 5'- and 3'-ends, has been used to create double-strand cross-links (triplex staples) at both termini of the TFO. Such complexes have no free single-stranded ends. TFOs containing 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen, 3-methyl-2-aminopyridine, and 5-(3-aminoprop-2-ynyl)deoxyuridine formed photoadducts with target duplexes under near-physiological conditions.  相似文献   

14.
The single-crystal structures are presented for two DNA sequences with the thymine bases covalently cross-linked across the complementary strands by 4'-hydroxymethyl-4,5',8-trimethylpsoralen (HMT). The HMT-adduct of d(CCGCTAGCGG) forms a psoralen-induced Holliday junction, showing for the first time the effect of this important class of chemotheraputics on the structure of the recombination intermediate. In contrast, HMT-d(CCGGTACCGG) forms a sequence-dependent junction. In both structures, the DNA duplex is highly distorted at the thymine base linked to the six-member pyrone ring of the drug. The psoralen cross-link defines the intramolecular interactions of the drug-induced junction, while the sequence-dependent structure is nearly identical to the native Holliday junction of d(CCGGTACCGG) alone. The two structures contrast the effects of drug- and sequence-dependent interactions on the structure of a Holliday junction, suggesting a role for psoralen in the mechanism to initiate repair of psoralen-lesions in mammalian DNA.  相似文献   

15.
From previous work it was known that U3 RNA is hydrogen bonded to nucleolar 28 S to 35 S RNA and can be covalently crosslinked to RNA of greater than 28 S by irradiation in vivo with long-wave ultraviolet light in the presence of 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT psoralen). Here we use a novel sandwich blot technique to identify these large nucleolar RNA species as rRNA precursors and to map the site(s) of crosslinking in vivo. The crosslink occurs between one or more residues near the 5' end of U3 RNA and a 380 nucleotide region of the rat rRNA external transcribed spacer (ETS1). We have sequenced this region of the rat ETS and we show that it includes an RNA-processing site analogous to those previously mapped to approximately 3.5 kb upstream from the 5' end of mouse and human 18 S rRNAs.  相似文献   

16.
We have described an exonuclease III/photoreversal procedure to map, with base pair resolution, the bases which have photoreacted with 4,5',8-trimethylpsoralen (Me3-psoralen) forming either monoadducts or interstrand cross-links in DNA (20). This assay allows quantitation of relative rates of Me3-psoralen photobinding to bases in DNA at levels as low as one cross-link per 8,000 base pairs. This assay should be useful for a wide variety of applications of Me3-psoralen photobinding to DNA. Here, we demonstrate the applicability of the Me3-psoralen exo III assay for analysis of the conformation of the Z forming sequences (GT)12ATGT and GAATTC(TG)6TA(TG)6. We have shown previously that Me3-psoralen forms crosslinks in the 5'TA within the (CG)6TA(CG)6 sequence when it exists in the B conformation but not when it exists in the Z conformation (34). More recently we have confirmed this result with the exo III assay and have shown at least a hundred fold increase in Me3-psoralen photoreactivity at the 5'AT sequence within the EcoR I sites (GAATTC) which presumably represent B-Z junctions flanking (CG)6TA(CG)6 (20). Here we demonstrate both the characteristic decrease in psoralen photobinding to 5'TAs within (GT)12ATGT and (TG)6TA(TG)6 and the hyperreactivity of B-Z junctions. These characteristic properties of Me3-psoralen photobinding provide an assay for Z-DNA that is applicable in vivo. The general applicability of this approach for assaying Z-DNA in vivo is discussed.  相似文献   

17.
Oligodeoxyribonucleoside methylphosphonates derivatized at the 5' end with 4'-(amino-alkyl)-4,5',8-trimethylpsoralen were prepared. The interaction of these psoralen-derivatized methylphosphonate oligomers with synthetic single-stranded DNAs 35 nucleotides in length was studied. Irradiation of a solution containing the 35-mer and its complementary methylphosphonate oligomer at 365 nm gave a cross-linked duplex produced by cycloaddition between the psoralen pyrone ring of the derivatized methylphosphonate oligomer and a thymine base of the DNA. Photoadduct formation could be reversed by irradiation at 254 nm. The rate and extent of cross-linking were dependent upon the length of the aminoalkyl linker between the trimethylpsoralen group and the 5' end of the methylphosphonate oligomer. Methylphosphonate oligomers derivatized with 4'-[[N-(2-aminoethyl)amino]methyl]- 4,5',8-trimethylpsoralen gave between 70% and 85% cross-linked product when irradiated for 20 min at 4 degrees C. Further irradiation did not increase cross-linking, and preirradiation of the psoralen-derivatized methylphosphonate oligomer at 365 nm reduced or prevented cross-linking. These results suggest that the methylphosphonate oligomers undergo both cross-linking and deactivation reactions when irradiated at 365 nm. The extent of cross-linking increased up to 10 microM oligomer concentration and dramatically decreased at temperatures above the estimated Tm of the methylphosphonate oligomer-DNA duplex. The cross-linking reaction was dependent upon the fidelity of base-pairing interactions between the methylphosphonate oligomers and the single-stranded DNA. Noncomplementary oligomers did not cross-link, and the extent of cross-linking of oligomers containing varying numbers of noncomplementary bases was greatly diminished or eliminated.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The RNA moiety of ribonuclease P from Escherichia coli (M1 RNA) has been photoreacted with 4'-(hydroxymethyl)-4,5',8-trimethylpsoralen (HMT) and long-wave UV light (320-380 nm) in a buffer containing 60 mM Mg2+, where the RNA moiety acts as a true catalyst of tRNA processing. Limited specific digestion and two-dimensional gel electrophoresis yield fragments cross-linked by HMT. By photoreversal of the isolated cross-linked fragments and enzymatic sequencing of the fragments, the positions of the cross-links have been elucidated. This method allows us to locate the cross-link to +/- 15 nucleotides. Further assignments of the exact locations of the cross-links have been made on the basis of the known photoreactivity of the psoralen with different bases. Nine unique cross-links have been isolated in the M1 RNA including four long-range interactions. The short-range interactions are discussed here in detail.  相似文献   

19.
The newly synthesized psoralen derivatives, 4' hydroxymethyl 4,5',8 trimethylpsoralen, 4' methoxymethyl 4,5',8 trimethylpsoralen, and 4' aminomethyl 4,5',8 trimethylpsoralen hydrochloride photoreact with the single-stranded RNA animal virus, Vesicular Stomatitis virus, VSV. This virus is inactivated 10(3) times more effectively by photoreaction with these compounds than when photoreacted with 4,5',8 trimethylpsoralen. Under these conditions the RNA virus remains more than 10(3) times less sensitive to inactivation by these new photoreagents than were two double-stranded DNA viruses, Herpes Simplex type 2 (HSV-2) and Vaccinia. Preliminary evidence for the generality of this result is discussed.  相似文献   

20.
The effect of negative supercoiling on UvrABC incision of covalently closed duplex DNA circles containing either a furan-side monoadduct or a cross-link of 4'-hydroxymethyl-4,5',8-trimethylpsoralen at a unique site was examined. The rate of UvrABC incision of these DNA substrates was measured as a function of superhelical density, sigma, for values of sigma between 0 and -0.050. The monoadducted DNA substrate was incised at close to the maximum rate at all superhelical densities, with only a slight stimulation of activity between sigma = 0 and -0.035. In contrast, efficient UvrABC incision of the cross-linked DNA substrate required the DNA to be underwound, and activity showed a linear dependence on superhelical density up to sigma = -0.035. DNase I protection studies show that in the presence of both UvrA and UvrB a protein complex binds to the site of a psoralen monoadduct or cross-link in linear DNA. This UvrA-UvrB-dependent complex binds with similar affinity to both the monoadducted and the cross-linked DNA helices. However, differences in the DNase I footprint on these two DNA substrates indicate that the interaction of this protein complex is different at these two lesions. The addition of UvrC to linear DNA molecules that are saturated at the site of the lesion with the UvrA-UvrB-dependent complex resulted in efficient nicking of the monoadducted DNA, but not the cross-linked DNA. Thus, the properties of a DNA lesion site that lead to UvrAB recognition and binding are not necessarily sufficient to allow incision when all three Uvr subunits are present. We propose that after recognition and binding of a lesion site by the UvrAB complex and prior to incision, the damaged DNA helix undergoes a conformational change such as unwinding or melting that is induced by the lesion-bound Uvr complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号