首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The gene coding for Bacillus cereus ATCC7064 (mesophile) oligo-1,6-glucosidase was cloned within a 2.8-kb SalI-EcoRI fragment of DNA, using the plasmid pUC19 as a vector and Escherichia coli C600 as a host. E. coli C600 bearing the hybrid plasmid pBCE4 accumulated oligo-1,6-glucosidase in the cytoplasm. The cloned enzyme coincided absolutely with B. cereus oligo-1,6-glucosidase in its Mr (65,000), in its electrophoretic behavior on a polyacrylamide gel with or without sodium dodecyl sulfate, in its isoelectric point (4.5), in the temperature dependence of its stability and activity, and in its antigenic determinants. The nucleotide sequence of B. cereus oligo-1,6-glucosidase gene and its flanking regions was determined with both complementary strands of DNA (each 2838 nucleotides). The gene consisted of an open reading frame of 1674 bp commencing with a ATG start codon and followed by a TAA stop codon. The amino acid sequence deduced from the nucleotide sequence predicted a protein of 558 amino acid residues with a Mr of 66,010. The amino acid composition and Mr were comparable with those of B. cereus oligo-1,6-glucosidase. The predicted N-terminal sequence of 10 amino acid residues agreed completely with that of the cloned ligo-1,6-glucosidase. The deduced amino acid sequence of B. cereus oligo-1,6-glucosidase was 72% and 42% similar to those from Bacillus thermoglucosidasius KP1006 (DSM2542, obligate thermophile) oligo-1,6-glucosidase and from Saccharomyces carlsbergensis CB11 alpha-glucosidase, respectively. Predictions of protein secondary structures along with amino acid sequence alignments demonstrated that B. cereus oligo-1,6-glucosidase may take the similar (alpha/beta)8-barrel super-secondary structure, a barrel of eight parallel beta-strands surrounded by eight alpha-helices, in its N-terminal active site domain as S. carlsbergensis alpha-glucosidase and Aspergillus oryzae alpha-amylase.  相似文献   

2.
The gene encoding for an extremely thermostable oligo-1,6-glucosidase from Bacillus thermoglucosidasius KP1006 (DSM2542, obligate thermophile) was sequenced. The amino acid sequence deduced from the nucleotide sequence of the gene (1686 base pairs) corresponded to a protein of 562 amino acid residues with a Mr of 66,502. Its predicted amino acid composition, Mr, and N-terminal sequence of 12 residues were consistent with those determined for B. thermoglucosidasius oligo-1,6-glucosidase. The deduced sequence of the enzyme was 72% homologous to that of a thermolabile oligo-1,6-glucosidase (558 residues) from Bacillus cereus ATCC7064 (mesophile). B. cereus oligo-1,6-glucosidase contained 19 prolines. Eighteen of these were conserved at the equivalent positions of B. thermoglucosidasius oligo-1,6-glucosidase. This enzyme contained 14 extra prolines besides the conservative prolines. The majority of extra prolines was replaced by polar or charged residues (Glu, Thr, or Lys) in B. cereus oligo-1,6-glucosidase. The extra prolines were responsible for the difference in thermostability between these two enzymes. We suggested that 11 of the extra prolines in B. thermoglucosidasius oligo-1,6-glucosidase occur in beta-turns or in coils within the loops binding adjacent secondary structures.  相似文献   

3.
To identify the critical sites for protein thermostabilization by proline substitution, the gene for oligo-1,6- glucosidase from a thermophilic Bacillus coagulans strain, ATCC 7050, was cloned as a 2.4-kb DNA fragment and sequenced. In spite of a big difference in their thermostabilities, B. coagulans oligo-1,6-glucosidase had a large number of points in its primary structure identical to respective points in the same enzymes from a mesophilic Bacillus cereus strain, ATCC 7064 (57%), and an obligately thermophilic Bacillus thermoglucosidasius strain, KP1006 (59%). The number of prolines (19 for B. cereus oligo-1,6-glucosidase, 24 for B. coagulans enzyme, and 32 for B. thermoglucosidasius enzyme) was observed to increase with the rise in thermostabilities of the oligo-1,6-glucosidases. Classification of proline residues in light of the amino acid sequence alignment and the protein structure revealed by X-ray crystallographic analysis also supported this tendency. Judging from proline residues occurring in B. coagulans oligo-1,6-glucosidase and the structural requirement for proline substitution (second site of the beta turn and first turn of the alpha helix) (K. Watanabe, T. Masuda, H. Ohashi, H. Mihara, and Y. Suzuki, Eur. J. Biochem. 226:277-283, 1994), the critical sites for thermostabilization were found to be Lys-121, Glu-290, Lys-457, and Glu-487 in B. cereus oligo-1,6-glucosidase. With regard to protein evolution, the oligo-1,6-glucosidases very likely follow the neutral theory. The adaptive mutations of the oligo-1,6-glucosidases that appear to increase thermostability are consistent with the substitution of proline residues for neutrally occurring residues. It is concluded that proline substitution is an important factor for the selection of thermostability in oligo-1,6-glucosidases.  相似文献   

4.
本研究用鸟枪法构建了枯草芽孢杆菌(Bacillus subtilis)HB002的基因组文库,经平板法筛选得到了六株能水解合成底物对-硝基苯-α-D-葡萄糖吡喃糖苷的阳性克隆,经鉴定均含克隆了寡聚-1,6-葡萄糖苷酶基因的重组质粒(命名为pHBM001-pHBM006)。选择pHBM003,对其插入片段测序分析,此片段内有一编码561个氨基酸的开放阅读框,该 蛋白质的计算分子量为65.985kD。HB002的寡聚-1,6-葡萄糖苷酶的氨基酸序列与Bacillus sp.和凝结芽孢杆菌(Bacillus coagulans)的寡聚-1,6-葡萄糖苷酶的氨基酸序列一致性分别为81%、67%,相似性分别为89%、79%。从pHBM003中扩增出寡聚-1,6-葡萄糖苷酶基因,克隆到pBV220上,转化大肠杆菌(Escherichia coli)DH5α,得到三个能水解对-硝基苯-α-D-葡萄糖吡喃糖苷的阳性克隆HBM003-1~HBM003-3,将此三个菌株热诱导表达,SDS-PAGE电泳可检测到特异表达的蛋白质,其中HBM003-1、HBM003-2表达的蛋白约66kD,为完整的寡聚-1,6-葡萄糖苷酶,而HBM003-3表达的蛋白质偏小;表达的蛋白质均有寡聚-1,6-葡萄糖苷酶活性。  相似文献   

5.
A p-nitrophenyl-alpha-D-glucopyranoside-hydrolyzing oligo-1,6-glucosidase of Bacillus coagulans ATCC 7050 (facultative thermophile) was purified to homogeneity. The relative molecular mass, Stokes radius, sedimentation coefficient at 20 degrees C in water, molecular absorption coefficient at 280 nm and pH 6.8, and isoelectric point were estimated as 60 000, 3.29 nm, 4.8 X 10(-13) s, 1.34 X 10(5) M-1 cm-1, and 4.3, respectively. The amino-terminal amino acid was threonine. There was no common antigenic group between the enzyme and each of its homologous counterparts from Bacillus cereus ATCC 7064 (mesophile) and Bacillus thermoglucosidasius KP 1006 (obligate thermophile). These oligo-1,6-glucosidases strongly resembled one another in their amino acid composition, except that the proline content increased with the elevation of thermostability in the order, mesophile----facultative thermophile----obligate thermophile enzymes.  相似文献   

6.
The gene coding for oligo-1,6-glucosidase from Bacillus cereus ATCC7064 has been overexpressed in Escherichia coli MV1184 cells under the control of the lac promoter in the genetically engineered plasmid pBCE4-2. Oligo-1,6-glucosidase was purified in large quantities and was crystallized at 25 degrees C by using a hanging drop vapor diffusion method with 53% saturated ammonium sulfate. The crystals have the shape of hexagonal bipyramids and belong to the space group P6(2) or P6(4) with lattice constants of a = b = 106.1 A, c = 120.0 A and gamma = 120 degrees.  相似文献   

7.
Dextran glucosidase from Streptococcus mutans (SMDG) and Bacillus oligo-1,6-glucosidases, members of glycoside hydrolase family 13 enzymes, have the high sequence similarity. Each of them is specific to alpha-1,6-glucosidic linkage at the non-reducing end of substrate to liberate glucose. The activities toward long isomaltooligosaccharides were different in both enzymes, in which SMDG and oligo-1,6-glucosidase showed high and low activities, respectively. We determined the structural elements essential for high activity toward long-chain substrate. From conformational comparison between SMDG and B. cereus oligo-1,6-glucosidase (three-dimensional structure has been solved), Trp238 and short beta-->alpha loop 4 of SMDG were considered to contribute to the high activity to long-chain substrate. W238A had similar kcat/Km value for isomaltotriose to that for isomaltose, suggesting that the affinity of subsite +2 was decreased by Trp238 replacement. Trp238 mutants as well as the chimeric enzyme having longer beta-->alpha loop 4 of B. subtilis oligo-1,6-glucosidase showed lower preference for long-chain substrates, indicating that both Trp238 and short beta-->alpha loop 4 were important for high activity to long-chain substrates.  相似文献   

8.
Three active site residues (Asp199, Glu255, Asp329) and two substrate-binding site residues (His103, His328) of oligo-1,6-glucosidase (EC 3.2.1.10) from Bacillus cereus ATCC7064 were identified by site-directed mutagenesis. These residues were deduced from the X-ray crystallographic analysis and the comparison of the primary structure of the oligo-1,6-glucosidase with those of Saccharomyces carlsbergensis alpha-glucosidase, Aspergillus oryzae alpha-amylase and pig pancreatic alpha-amylase which act on alpha-1,4-glucosidic linkages. The distances between these putative residues of B. cereus oligo-1,6-glucosidase calculated from the X-ray analysis data closely resemble those of A. oryzae alpha-amylase and pig pancreatic alpha-amylase. A single mutation of Asp199-->Asn, Glu255-->Gln, or Asp329-->Asn resulted in drastic reduction in activity, confirming that three residues are crucial for the reaction process of alpha-1,6-glucosidic bond cleavage. Thus, it is identified that the basic mechanism of oligo-1,6-glucosidase for the hydrolysis of alpha-1,6-glucosidic linkage is essentially the same as those of other amylolytic enzymes belonging to Family 13 (alpha-amylase family). On the other hand, mutations of histidine residues His103 and His328 resulted in pronounced dissimilarity in catalytic function. The mutation His328-->Asn caused the essential loss in activity, while the mutation His103-->Asn yielded a mutant enzyme that retained 59% of the k0/Km of that for the wild-type enzyme. Since mutants of other alpha-amylases acting on alpha-1,4-glucosidic bond linkage lost most of their activity by the site-directed mutagenesis at their equivalent residues to His103 and His328, the retaining of activity by His103-->Asn mutation in B. cereus oligo-1,6-glucosidase revealed the distinguished role of His103 for the hydrolysis of alpha-1,6-glucosidic bond linkage.  相似文献   

9.
Three active site residues (Asp199, Glu255, Asp329) and two substrate-binding site residues (His103, His328) of oligo-1,6-glucosidase (EC 3.2.1.10) from Bacillus cereus ATCC7064 were identified by site-directed mutagenesis. These residues were deduced from the X-ray crystallographic analysis and the comparison of the primary structure of the oligo-1,6-glucosidase with those of Saccharomyces carlsbergensis α-glucosidase, Aspergillus oryzae α-amylase and pig pancreatic α-amylase which act on α-1,4-glucosidic linkages. The distances between these putative residues of B. cereus oligo-1,6-glucosidase calculated from the X-ray analysis data closely resemble those of A. oryzae α-amylase and pig pancreatic α-amylase. A single mutation of Asp199→Asn, Glu255→Gln, or Asp329→Asn resulted in drastic reduction in activity, confirming that three residues are crucial for the reaction process of α-1,6-glucosidic bond cleavage. Thus, it is identified that the basic mechanism of oligo-1,6-glucosidase for the hydrolysis of α-1,6-glucosidic linkage is essentially the same as those of other amylolytic enzymes belonging to Family 13 (α-amylase family). On the other hand, mutations of histidine residues His103 and His328 resulted in pronounced dissimilarity in catalytic function. The mutation His328→Asn caused the essential loss in activity, while the mutation His103→Asn yielded a mutant enzyme that retained 59% of the κ0/Km of that for the wild-type enzyme. Since mutants of other α-amylases acting on α-1,4-glucosidic bond linkage lost most of their activity by the site-directed mutagenesis at their equivalent residues to His103 and His328, the retaining of activity by Hisl03→Asn mutation in B. cereus oligo-1,6-glucosidase revealed the distinguished role of His103 for the hydrolysis of α-1,6-glucosidic bond linkage.  相似文献   

10.
Glycogen-debranching enzyme (GDE) gene from Saccharomyces cerevisiae was cloned and expressed into Escherichia coli. A 99.3% homology was found between the nucleotide sequences of GDE gene harbored in the recombinant E. coli plasmid (pTrc99A) and the open reading frame (902039-906646 position) of the 4608-bp fragment of S. cerevisiae chromosome XVI. We investigated the best conditions for GDE expression. When the cultivation temperature of recombinant E. coli strains was lowered to 25 degrees C and the isopropyl-beta-d-thiogalactopyranoside (IPTG) concentration used for induction was decreased to as low as 0.02 mM, a total of about 33 mg of recombinant GDE can be isolated from a liter culture as estimated by amylo-1,6-glucosidase activity. Consecutively, we developed a new method for purifying GDE. The method requires only a single-step purification via beta-cyclodextrin-immobilized Sepharose 6B (beta-CD Sepharose 6B) affinity chromatography and renders a 90% recovery of the enzyme. Moreover, the purified recombinant GDE is a homogeneous protein and possesses the same characteristics as those of S. cerevisiae. With the highly expressed GDE in recombinant E. coli and a rapid and effective purification method, we successfully resolved the hurdle always faced for obtaining an ample amount of purified GDE. The availability of GDE, hence, may allow advancement on GDE studies and provide new prospects for GDE on biotechnological application.  相似文献   

11.
Bacillus stearothermophilus SA0301 produces an extracellular oligo-1,6-glucosidase (bsO16G) that also hydrolyzes p-nitrophenyl alpha-D-glucoside (Tonozuka et al., J. Appl. Glycosci., 45, 397-400 (1998)). We cloned a gene for an enzyme hydrolyzing p-nitrophenyl alpha-D-glucoside, which was different from the one mentioned above, from B. stearothermophilus SA0301. The k(0)/K(m) values of bsO16G for isomaltotriose and isomaltose were 13.2 and 1.39 s(-1).mM(-1) respectively, while the newly cloned enzyme did not hydrolyze isomaltotriose, and the k(0)/K(m) value for isomaltose was 0.81 s(-1).mM(-1). The primary structure of the cloned enzyme more closely resembled those of trehalose-6-phosphate hydrolases than those of oligo-1,6-glucosidases, and the cloned enzyme hydrolyzed trehalose 6-phosphate. An open reading frame encoding a protein homologous to the trehalose-specific IIBC component of the phopshotransferase system was also found upstream of the gene for this enzyme.  相似文献   

12.
A gene encoding a new amylolytic enzyme of Bacillus licheniformis (BLMA) has been cloned, and we characterized the enzyme expressed in Escherichia coli. The genomic DNA of B. licheniformis was double-digested with EcoRI and BamHI and ligated the pBR322. The transformed E. coli was selected by its amylolytic activity, which carries the recombinant plasmid pIJ322 containing a 3.5-kilobase fragment of B. licheniformis DNA. The purified enzyme encoded by pIJ322 was capable of hydrolyzing pullulan and cyclodextrin as well as starch. It was active over a pH range of 6-8 and its optimum temperature was 50 degrees C. The molecular weight of the enzyme was 64,000, and the isoelectric point was 5.4. It degraded soluble starch by cleaving maltose units preferentially but did not attack alpha-1,6-linkage. The enzyme also hydrolyzed pullulan to panose units exclusively. In the presence of glucose, however, it transferred the panosyl moiety to glucose with the formation of alpha-1,6-linkage. The specificity of transferring activity is evident from the result of the maltosyl-transferring reaction which produces isopanose from maltotriose and glucose. The molecular structure of the enzyme deduced from the nucleotide sequence of the clone maintains limited similarity in the conserved regions to the other amylolytic enzymes.  相似文献   

13.
The cloning, sequencing and structural characterization of a gene encoding a thermostable alpha-1,4-glucosidase from Thermomonospora curvata is described. DNA sequence analysis revealed four open reading frames designated aglA, aglR, aglE and aglF. The aglA gene encodes a thermostable alpha-1,4-glucosidase from T. curvata and is situated between two genes, aglR and aglE. Genes aglA, aglE and aglF are transcribed in the same direction, while aglR is transcribed in the opposite direction. By comparing the amino acid sequence of the alpha-1,4-glucosidase from T. curvata with other alpha-glucanases, it appears that the enzyme is a member of the alpha-amylase family. The proteins of this family have an (alpha/beta)8 barrel super secondary structure. The topology of the alpha-1,4-glucosidase was predicted by computer-assisted analysis. The topology of the secondary structures of the alpha-1,4-glucosidase resembles the structure of barley alpha-amylase, but the primary structure resembles most closely the oligo-1,6-glucosidase from Bacillus cereus. Putative catalytic residues (D221, E281 and D343) and calcium binding residues (N116, E179, D191, H224 or G225) are proposed.  相似文献   

14.
A gene coding for a putative α-glucosidase has been identified in the open reading frame yvdL (now termed malL), which was sequenced as part of the Bacillus subtilis genome project. The enzyme was overproduced in Escherichia coli and purified. Further analyses indicate that MalL is a specific oligo-1,4-1,6-α-glucosidase (sucrase-maltase-isomaltase). MalL expression in B. subtilis requires maltose induction and is subject to carbon catabolite repression by glucose and fructose. Insertional mutagenesis of malL resulted in a complete inactivation of the maltose-inducible α-glucosidase activity in crude protein extracts and a Mal phenotype.  相似文献   

15.
We constructed the plasmid pTTB151 in which the E. coli bioB gene was expressed under the control of the tac promoter. Conversion of dethiobiotin to biotin was demonstrated in cell-free extracts of E. coli carrying this plasmid. The requirements for this biotin-forming reaction included fructose-1,6-bisphosphate, Fe2+, S-adenosyl-L-methionine, NADPH, and KCl, as well as dethiobiotin as the substrate. The enzymes were partially purified from cell-free extracts by a procedure involving ammonium sulfate fractionation. Our results suggest that an unidentified enzyme(s) besides the bioB gene product is obligatory for the conversion of dethiobiotin to biotin.  相似文献   

16.
A mutant strain of Escherichia coli K-12, designated 618, accumulates glycogen at a faster rate than wild-type strain 356. The mutation affects the ADPglucose pyrophosphorylase regulatory properties (N. Creuzat-Sigal, M. Latil-Damotte, J. Cattaneo, and J. Puig, p. 647-680, in R. Piras and H. G. Pontis, ed., Biochemistry of the Glycocide Linkage, 1972). The enzyme is less dependent on the activator, fructose 1,6 bis-phosphate for activity and is less sensitive to inhibition by the inhibitor, 5'-AMP. The structural gene, glgC, for this allosteric mutant enzyme was cloned into the bacterial plasmid pBR322 by inserting the chromosomal DNA at the PstI site. The glycogen biosynthetic genes were selected by cotransformation of the neighboring asd gene into an E. coli mutant also defective in branching enzyme (glgB) activity. Two recombinant plasmids, pEBL1 and pEBL3, that had PstI chromosomal DNA inserts containing glgC and glgB were isolated. Branching enzyme and ADPglucose pyrophosphorylase activities were increased 240- and 40-fold, respectively, in the asd glgB mutant, E. coli K-12 6281. The E. coli K-12 618 mutant glgC gene product was characterized after transformation of an E. coli B ADPglucose pyrophosphorylase mutant with the recombinant plasmid pEBL3. The kinetic properties of the cloned ADPglucose pyrophosphorylase were similar to those of the E. coli K-12 618 enzyme. The inserted DNA in pEBL1 was arranged in opposite orientation to that in pEBL3.  相似文献   

17.
The dexC cDNA, which is expressed in dextran-containing medium by the filamentous fungus Penicillium minioluteum, was cloned and sequence characterized. The cDNA sequence comprises 1859 bp plus a poly (A) tail, coding for a predicted protein of 597 amino acids. The genomic counterpart was isolated by PCR, finding three introns in its sequence. The dexC gene was located by Southern blot in the same 9-kb fragment that the previously isolated dextranase-encoding gene (dexA). Sequence analysis revealed that the deduced DexC protein belongs to glycosyl hydrolase family 13, showing a high sequence identity (58%) with Aspergillus parasiticus alpha-1,6-glucosidase. In addition, the high sequence identity (51%) between DexC protein and oligo-1,6-glucosidase of Bacillus cereus, with three-dimensional (3D) structure determined, leads us to proposed a 3D model for the structural core of DexC protein.  相似文献   

18.
We have sequenced the gene encoding Bacillus stearothermophilus ATCC12016 -glucosidase (-d-glucoside glucohydrolase, EC 3.2.1.20) specific for non-reducing terminal -1,4 bonds of maltosaccharides and -glucans. The amino acid sequence of the enzyme deduced from the nucleotide sequence of the gene (1665 base pairs) consisted of 555 residues with a molecular mass of 65233. The enzyme showed 40%–57% sequence similarities to -d-glucohydrolases with very different substrate specificity, such as Bacillus cereus ATCC7064 oligo-1,6-glucosidase, Bacillus thermoglucosidasius KP1006 oligo-1,6-glucosidase, Saccharomyces carlsbergensis CB11 -glucosidase, Bacillus sp. F5 -glucosidase, Streptococcus mutans (Ingbritt strain) dextran glucosidase, Bacillus sp. SAM1606 -glucosidase and Escherichia coli ECL116 trehalose-6-phosphate hydrolase. All these enzymes had sequences equivalent to secondary elements revealed in B. cereus oligo-1,6-glucosidase by X-ray crystallography. We have suggested that the B.stearothermophilus enzyme adopts the same polypeptide folding, i.e. an (/)8-barrel in the N-terminal active-site domain, as the B.cereus enzyme and other -glucohydrolases.  相似文献   

19.
The genes ptsI and ptsH, which encode, respectively, enzyme I and Hpr, cytoplasmic proteins involved in the phosphoenolpyruvate:sugar phosphotransferase system, were cloned from Bacillus subtilis. A plasmid containing a 4.1-kilobase DNA fragment was shown to complement Escherichia coli mutations affecting the ptsH and ptsI genes. In minicells this plasmid expressed two proteins with the molecular weights expected for Hpr and enzyme I. Therefore, ptsH and ptsI are adjacent in B. subtilis, as in E. coli. In E. coli a third gene (crr), involved in glucose translocation and also in catabolite repression, is located downstream from the ptsHI operon. The 4.1-kilobase fragment from B. subtilis was shown to contain a gene that enables an E. coli crr mutant to use glucose. This gene, unlike the E. coli crr gene, was located to the left of ptsH.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号