首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Large quantities of the potentially toxic compound styrene are produced and used annually by the petrochemical and polymer-processing industries. It is as a direct consequence of this that significant volumes of styrene are released into the environment in both the liquid and the gaseous forms. Styrene and its metabolites are known to have serious negative effects on human health and therefore, strategies to prevent its release, remove it from the environment, and understand its route of degradation were the subject of much research. There are a large number of microbial genera capable of metabolizing styrene as a sole source of carbon and energy and therefore, the possibility of applying these organisms to bioremediation strategies was extensively investigated. From the multitude of biodegradation studies, the application of styrene-degrading organisms or single enzymes for the synthesis of value-added products such as epoxides has emerged.  相似文献   

2.
This review is a survey of bacterial dehalogenases that catalyze the cleavage of halogen substituents from haloaromatics, haloalkanes, haloalcohols, and haloalkanoic acids. Concerning the enzymatic cleavage of the carbon-halogen bond, seven mechanisms of dehalogenation are known, namely, reductive, oxygenolytic, hydrolytic, and thiolytic dehalogenation; intramolecular nucleophilic displacement; dehydrohalogenation; and hydration. Spontaneous dehalogenation reactions may occur as a result of chemical decomposition of unstable primary products of an unassociated enzyme reaction, and fortuitous dehalogenation can result from the action of broad-specificity enzymes converting halogenated analogs of their natural substrate. Reductive dehalogenation either is catalyzed by a specific dehalogenase or may be mediated by free or enzyme-bound transition metal cofactors (porphyrins, corrins). Desulfomonile tiedjei DCB-1 couples energy conservation to a reductive dechlorination reaction. The biochemistry and genetics of oxygenolytic and hydrolytic haloaromatic dehalogenases are discussed. Concerning the haloalkanes, oxygenases, glutathione S-transferases, halidohydrolases, and dehydrohalogenases are involved in the dehalogenation of different haloalkane compounds. The epoxide-forming halohydrin hydrogen halide lyases form a distinct class of dehalogenases. The dehalogenation of alpha-halosubstituted alkanoic acids is catalyzed by halidohydrolases, which, according to their substrate and inhibitor specificity and mode of product formation, are placed into distinct mechanistic groups. beta-Halosubstituted alkanoic acids are dehalogenated by halidohydrolases acting on the coenzyme A ester of the beta-haloalkanoic acid. Microbial systems offer a versatile potential for biotechnological applications. Because of their enantiomer selectivity, some dehalogenases are used as industrial biocatalysts for the synthesis of chiral compounds. The application of dehalogenases or bacterial strains in environmental protection technologies is discussed in detail.  相似文献   

3.
To date, more than 500 species of yeasts have been described. Most of the genetic and biochemical studies have, however, been carried out with Saccharomyces cerevisiae. Although a considerable amount of knowledge has been accumulated on fundamental processes and biotechnological applications of this industrially important yeast, the large variety of other yeast genera and species may offer various advantages for experimental study as well as for product formation in biotechnology. The genetic investigation of these so-called unconventional yeasts is poorly developed and information about corresponding data is dispersed. It is the aim of this review to summarize and discuss the main results of genetic studies and biotechnological applications of unconventional yeasts and to serve as a guide for scientists who wish to enter this field or are interested in only some aspects of these yeasts.  相似文献   

4.
Curdlan is a water-insoluble β-(1,3)-glucan produced by Agrobacterium species under nitrogen-limited condition. Its heat-induced gelling properties render curdlan to be very useful in the food industry initially. Recent advances in the understanding of the role curdlan plays in both innate and adaptive immunity lead to its growing applications in biomedicine. Our review focuses on the recent advances on curdlan biosynthesis and the improvements of curdlan fermentation production both from our laboratory and many others as well as the latest advances on the new applications of curdlan and its derivatives particularly in their immunological functions in biomedicine.  相似文献   

5.
Besides research on the model fungal genera Saccharomyces, Neurospora and Aspergillus, that has provided important biological knowledge in the areas of genetics, cell biology and physiology, recent investigations on non-model fungi used for food production offer insight into the mechanisms involved in food production but also adaptation and domestication processes. In this context, Penicillium roqueforti has been the most extensively studied species. This species is best known worldwide for its technological use for blue-veined cheese production and ripening. Recently, several advances related to taxonomy, population genetics, physiology and metabolism have been documented and provided deeper knowledge about this species. The methodological approaches used to study this species can be applied to other still largely understudied fungi associated with food production worldwide (e.g. P. camemberti, P. nalgiovense, P. salamii, Bisifusarium domesticum, Mucor spp.).  相似文献   

6.
Dirigent proteins (DIRs) are thought to play important roles in plant secondary metabolism. They lack catalytic activity but direct the outcome of bimolecular coupling reactions toward regio- and stereospecific product formation. Functionally described DIRs confer specificity to the oxidative coupling of coniferyl alcohol resulting in the preferred production of either (+)- or (?)-pinoresinol, which are the first intermediates in the enantiocomplementary pathways for lignan biosynthesis. DIRs are extracellular glycoproteins with high β-strand content and have been found in all land plants investigated so far. Their ability to capture and orientate radicals represents a unique naturally evolved concept for the control of radical dimerization reactions. Although oxidative coupling is commonly used in biological systems, its wider application in chemical synthesis is often limited by insufficient selectivity. This minireview gives an overview of functionally described DIRs and their molecular characteristics and wants to inspire further research for their use in biotechnological applications.  相似文献   

7.
Lipases are serine hydrolases that catalyze in nature the hydrolysis of ester bonds of long chain triacylglycerol into fatty acid and glycerol. However, in favorable thermodynamic conditions, they are also able to catalyze reactions of synthesis such as esterification or amidation. The non-conventional yeast Yarrowia lipolytica possesses 16 paralogs of genes coding for lipase. However, little information on all those paralogs has been yet obtained and only three isoenzymes, namely Lip2p, Lip7p and Lip8p have been partly characterized so far. Microarray data suggest that only a few of them could be expressed and that lipase synthesis seems to be dependent on the fatty acid or oil used as carbon source confirming the high adaptation of Y. lipolytica to hydrophobic substrate utilization. This review focuses on the biochemical characterization of those enzymes with special emphasis on the Lip2p lipase which is the isoenzyme mainly synthesized by Y. lipolytica. Crystallographic data highlight that this latter is a lipase sensu stricto with a lid covering the active site of the enzyme in its closed conformation. Recent findings on enzyme conditioning in dehydrated or liquid formulation, in enzyme immobilization by entrapment in natural polymers from either organic or mineral origins are also discussed together with long-term storage strategies. The development of various biotechnological applications in different fields such as cheese ripening, waste treatment, drug synthesis or human therapeutics is also presented.  相似文献   

8.
Tyrosinases are type-3 copper proteins involved in the initial step of melanin synthesis. These enzymes catalyse both the o-hydroxylation of monophenols and the subsequent oxidation of the resulting o-diphenols into reactive o-quinones, which evolve spontaneously to produce intermediates, which associate in dark brown pigments. In fungi, tyrosinases are generally associated with the formation and stability of spores, in defence and virulence mechanisms, and in browning and pigmentation. First characterized from the edible mushroom Agaricus bisporus because of undesirable enzymatic browning problems during postharvest storage, tyrosinases were found, more recently, in several other fungi with relevant insights into molecular and genetic characteristics and into reaction mechanisms, highlighting their very promising properties for biotechnological applications. The limit of these applications remains in the fact that native fungal tyrosinases are generally intracellular and produced in low quantity. This review compiles the recent data on biochemical and molecular properties of fungal tyrosinases, underlining their importance in the biotechnological use of these enzymes. Next, their most promising applications in food, pharmaceutical and environmental fields are presented and the bioengineering approaches used for the development of tyrosinase-overproducing fungal strains are discussed.  相似文献   

9.
Plant lipids have essential biological roles in plant development and stress responses through their functions in cell membrane formation, energy storage and signalling. Vegetable oil, which is composed mainly of the storage lipid triacylglycerol, also has important applications in food, biofuel and oleochemical industries. Lipid biosynthesis occurs in multiple subcellular compartments and involves the coordinated action of various pathways. Although biochemical and molecular biology research over the last few decades has identified many proteins associated with lipid metabolism, our current understanding of the dynamic protein interactomes involved in lipid biosynthesis, modification and channelling is limited. This review examines advances in the identification and characterization of protein interactomes involved in plant lipid biosynthesis, with a focus on protein complexes consisting of different subunits for sequential reactions such as those in fatty acid biosynthesis and modification, as well as transient or dynamic interactomes formed from enzymes in cooperative pathways such as assemblies of membrane-bound enzymes for triacylglycerol biosynthesis. We also showcase a selection of representative protein interactome structures predicted using AlphaFold2, and discuss current and prospective strategies involving the use of interactome knowledge in plant lipid biotechnology. Finally, unresolved questions in this research area and possible approaches to address them are also discussed.  相似文献   

10.
11.
Quinoproteins: structure, function, and biotechnological applications   总被引:13,自引:0,他引:13  
A new class of oxidoreductase containing an amino acid-derived o-quinone cofactor, of which the most typical is pyrroloquinoline quinone (PQQ), is called quinoproteins, and has been recognized as the third redox enzyme following pyridine nucleotide- and flavin-dependent dehydrogenases. Some quinoproteins include a heme c moiety in addition to the quinone cofactor in the molecule and are called quinohemoproteins. PQQ-containing quinoproteins and quinohemoproteins have a common structural basis, in which PQQ is deeply embedded in the center of the unique superbarrel structure. Increased evidence for the structure and function of quinoproteins has revealed their unique position within the redox enzymes with respect to catalytic and electron transfer properties, and also to physiological and energetic function. The peculiarities of the quinoproteins, together with their unique substrate specificity, have encouraged their biotechnological application in the fields of biosensing and bioconversion of useful compounds, and also to environmental treatment.  相似文献   

12.
The functions of phycobiliproteins and phycobilisomes as photosynthetic antenna pigments in cells of cyanobacteria and a range of algae were considered. Achievements in the area of biological and natural sciences connected with study of phycobiliproteins are described. Sources and different possibilities of the practical application of these pigments in fluorescent spectroscopy, pharmacy, and biotechnology are analyzed.  相似文献   

13.
d-Tagatose has attracted a great deal of attention in recent years due to its health benefits and similar properties to sucrose. d-Tagatose can be used as a low-calorie sweetener, as an intermediate for synthesis of other optically active compounds, and as an additive in detergent, cosmetic, and pharmaceutical formulation. Biotransformation of d-tagatose has been produced using several biocatalyst sources. Among the biocatalysts, l-arabinose isomerase has been mostly applied for d-tagatose production because of the industrial feasibility for the use of d-galactose as a substrate. In this article, the characterization of many l-arabinose isomerases and their d-tagatose production is compared. Protein engineering and immobilization of the enzyme for increasing the conversion rate of d-galactose to d-tagatose are also reviewed.  相似文献   

14.
Magnetotactic bacteria orient and migrate along geomagnetic field lines. This ability is based on intracellular magnetic structures, the magnetosomes, which comprise nanometer-sized, membrane-bound crystals of the magnetic iron minerals magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome formation is achieved by a mineralization process with biological control over the accumulation of iron and the deposition of the mineral particle with specific size and orientation within a membrane vesicle at specific locations in the cell. This review focuses on the current knowledge about magnetotactic bacteria and will outline aspects of the physiology and molecular biology of the biomineralization process. Potential biotechnological applications of magnetotactic bacteria and their magnetosomes as well as perspectives for further research are discussed. Received: 2 December 1998 / Received revision: 2 March 1999 / Accepted: 5 March 1999  相似文献   

15.
The phytochromes have important functions in regulating plant growth and development in response to signals perceived from the natural light environment. In particular, the phytochrome-mediated shade avoidance syndrome has major significance for competition between plants growing in natural dense communities. In recent years, the availability of DNA sequences coding for members of the phytochrome family has enabled the construction of transgenic plants that express these sequences to high levels. Introduced PHY genes expressed in heterologous or homologous hosts yield apoproteins that combine with chromophores and are physiologically functional. Physiological analysis of transgenic plants expressing introduced PHYA and PHYB coding sequences has contributed to understanding the functions of phytochromes A and B. Ecological experiments with transgenic PHYA expressers have provided a novel test of the adaptive plasticity hypothesis, and point the way to a transgenic programme to improve crop plants.  相似文献   

16.
Carotenoid biosynthesis and biotechnological application   总被引:13,自引:0,他引:13  
A survey is given on the carotenoid biosynthetic pathway leading to beta-carotene and its oxidation products in bacteria and plants. This includes the synthesis of prenyl pyrophosphates via the mevalonate or the 1-deoxyxylulose-5-phosphate pathways as well as the reaction sequences of carotenoid formation and interconversion together with the properties of the enzymes involved. Biotechnological application of this knowledge resulted in the development of heterologous carotenoid production systems using bacteria and fungi with metabolic engineered precursor supply and crop plants with manipulated carotenoid biosynthesis. The recent developments in engineering crops with increased carotenoid contents are covered.  相似文献   

17.
Many researchers have acknowledged the fact that there exists an immense potential for the application of the cellulose-binding domains (CBDs) in the field of biotechnology. This becomes apparent when the phrase "cellulose-binding domain" is used as the key word for a computerized patent search; more then 150 hits are retrieved. Cellulose is an ideal matrix for large-scale affinity purification procedures. This chemically inert matrix has excellent physical properties as well as low affinity for nonspecific protein binding. It is available in a diverse range of forms and sizes, is pharmaceutically safe, and relatively inexpensive. Present studies into the application of CBDs in industry have established that they can be applied in the modification of physical and chemical properties of composite materials and the development of modified materials with improved properties. In agro-biotechnology, CBDs can be used to modify polysaccharide materials both in vivo and in vitro. The CBDs exert nonhydrolytic fiber disruption on cellulose-containing materials. The potential applications of "CBD technology" range from modulating the architecture of individual cells to the modification of an entire organism. Expressing these genes under specific promoters and using appropriate trafficking signals, can be used to alter the nutritional value and texture of agricultural crops and their final products.  相似文献   

18.
Aminomutases carry out the chemically challenging exchange of a hydrogen atom and an amine substituent present on neighboring carbon atoms. In recent years, aminomutases have been intensively investigated for their biophysical, structural and mechanistic characteristics. The reactions catalyzed by these enzymes have considerable potential for biotechnological applications. Here, we present an overview of this diverse group of enzymes, with a focus on enzymatic mechanisms and recent developments in their use in applied biocatalysis.  相似文献   

19.
Carbonic anhydrase (CA) is an essential metalloenzyme in living systems for accelerating the hydration and dehydration of carbon dioxide. CA-catalyzed reactions can be applied in vitro for capturing industrially emitted gaseous carbon dioxide in aqueous solutions. To facilitate this type of practical application, the immobilization of CA on or inside solid or soft support materials is of great importance because the immobilization of enzymes in general offers the opportunity for enzyme recycling or long-term use in bioreactors. Moreover, the thermal/storage stability and reactivity of immobilized CA can be modulated through the physicochemical nature and structural characteristics of the support material used. This review focuses on (i) immobilization methods which have been applied so far, (ii) some of the characteristic features of immobilized forms of CA, and (iii) biotechnological applications of immobilized CA. The applications described not only include the CA-assisted capturing and sequestration of carbon dioxide, but also the CA-supported bioelectrochemical conversion of CO2 into organic molecules, and the detection of clinically important CA inhibitors. Furthermore, immobilized CA can be used in biomimetic materials synthesis involving cascade reactions, e.g. for bone regeneration based on calcium carbonate formation from urea with two consecutive reactions catalyzed by urease and CA.  相似文献   

20.
Biodegradable nonionic sugar esters-based surfactants have been gaining more and more attention in recent years due to their chemical plasticity that enables the various applications of these molecules. In this review, various synthesis methods and biotechnological implications of lactose esters (LEs) uses are considered. Several chemical and enzymatic approaches are described for the synthesis of LEs, together with their applications, i.e. function in detergents formulation and as additives that not only stabilize food products but also protect food from undesired microbial contamination. Further, this article discusses medical applications of LEs in cancer treatment, especially their uses as biosensors, halogenated anticancer drugs, and photosensitizing agents for photodynamic therapy of cancer and photodynamic inactivation of microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号