首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Soil bacteria are important contributors to primary productivity and nutrient cycling in arid land ecosystems, and their populations may be greatly affected by changes in environmental conditions. In parallel studies, the composition of the total bacterial community and of members of the Acidobacterium division were assessed in arid grassland soils using terminal restriction fragment length polymorphism (TRF, also known as T-RFLP) analysis of 16S rRNA genes amplified from soil DNA. Bacterial communities associated with the rhizospheres of the native bunchgrasses Stipa hymenoides and Hilaria jamesii, the invading annual grass Bromus tectorum, and the interspaces colonized by cyanobacterial soil crusts were compared at three depths. When used in a replicated field-scale study, TRF analysis was useful for identifying broad-scale, consistent differences in the bacterial communities in different soil locations, over the natural microscale heterogeneity of the soil. The compositions of the total bacterial community and Acidobacterium division in the soil crust interspaces were significantly different from those of the plant rhizospheres. Major differences were also observed in the rhizospheres of the three plant species and were most apparent with analysis of the Acidobacterium division. The total bacterial community and the Acidobacterium division bacteria were affected by soil depth in both the interspaces and plant rhizospheres. This study provides a baseline for monitoring bacterial community structure and dynamics with changes in plant cover and environmental conditions in the arid grasslands.  相似文献   

2.
The diversity and composition of soil bacterial communities were compared among six Austrian natural forests, including oak-hornbeam, spruce-fir-beech, and Austrian pine forests, using terminal restriction fragment length polymorphism (T-RFLP, or TRF) analysis and sequence analysis of 16S rRNA genes. The forests studied differ greatly in soil chemical characteristics, microbial biomass, and nutrient turnover rates. The aim of this study was to relate these differences to the composition of the bacterial communities inhabiting the individual forest soils. Both TRF profiling and clone sequence analysis revealed that the bacterial communities in soils under Austrian pine forests, representing azonal forest types, were distinct from those in soils under zonal oak-hornbeam and spruce-fir-beech forests, which were more similar in community composition. Clones derived from an Austrian pine forest soil were mostly affiliated with high-G+C gram-positive bacteria (49%), followed by members of the α-Proteobacteria (20%) and the Holophaga/Acidobacterium group (12%). Clones in libraries from oak-hornbeam and spruce-fir-beech forest soils were mainly related to the Holophaga/Acidobacterium group (28 and 35%), followed by members of the Verrucomicrobia (24%) and the α-Proteobacteria (27%), respectively. The soil bacterial communities in forests with distinct vegetational and soil chemical properties appeared to be well differentiated based on 16S rRNA gene phylogeny. In particular, the outstanding position of the Austrian pine forests, which are determined by specific soil conditions, was reflected in the bacterial community composition.  相似文献   

3.
Elevated atmospheric CO2 increases aboveground plant growth and productivity. However, carbon dioxide-induced alterations in plant growth are also likely to affect belowground processes, including the composition of soil biota. We investigated the influence of increased atmospheric CO2on bacterial numbers and activity, and on soil microbial community composition in a pasture ecosystem under Free-Air Carbon Dioxide Enrichment (FACE). Composition of the soil microbial communities, in rhizosphere and bulk soil, under two atmospheric CO2 levels was evaluated by using phospholipid fatty acid analysis (PLFA), and total and respiring bacteria counts were determined by epifluorescence microscopy. While populations increased with elevated atmospheric CO2 in bulk soil of white clover (Trifolium repens L.), a higher atmospheric CO2 concentration did not affect total or metabolically active bacteria in bulk soil of perennial ryegrass (Lolium perenne L.). There was no effect of atmospheric CO2 on total bacteria populations per gram of rhizosphere soil. The combined effect of elevated CO2 on total root length of each species and the bacterial population in these rhizospheres, however, resulted in an 85% increase in total rhizosphere bacteria and a 170% increase in respiring rhizosphere bacteria for the two plant species, when assessed on a per unit land area basis. Differences in microbial community composition between rhizosphere and bulk soil were evident in samples from white clover, and these communities changed in response to CO2 enrichment. Results of this study indicate that changes in soil microbial activity, numbers, and community composition are likely to occur under elevated atmospheric CO2, but the extent of those changes depend on plant species and the distance that microbes are from the immediate vicinity of the plant root surface.  相似文献   

4.
Understanding the links between plant diversity and soil communities is critical to disentangling the mechanisms by which plant communities modulate ecosystem function. Experimental plant communities varying in species richness, evenness, and density were established using a response surface design and soil community properties including bacterial and archaeal abundance, richness, and evenness were measured. The potential to perform a representative soil ecosystem function, oxidation of ammonium to nitrite, was measured via archaeal and bacterial amoA genes. Structural equation modeling was used to explore the direct and indirect effects of the plant community on soil diversity and potential function. Plant communities influenced archaea and bacteria via different pathways. Species richness and evenness had significant direct effects on soil microbial community structure, but the mechanisms driving these effects did not include either root biomass or the pools of carbon and nitrogen available to the soil microbial community. Species richness had direct positive effects on archaeal amoA prevalence, but only indirect impacts on bacterial communities through modulation of plant evenness. Increased plant evenness increased bacterial abundance which in turn increased bacterial amoA abundance. These results suggest that plant community evenness may have a strong impact on some aspects of soil ecosystem function. We show that a more even plant community increased bacterial abundance, which then increased the potential for bacterial nitrification. A more even plant community also increased total dissolved nitrogen in the soil, which decreased the potential for archaeal nitrification. The role of plant evenness in structuring the soil community suggests mechanisms including complementarity in root exudate profiles or root foraging patterns.  相似文献   

5.
Questions: To what degree do biological soil crusts (BSCs), which are regulators of the soil surface boundary, influence associated microbial communities? Are these associations important to ecosystem functioning in a Mediterranean semi‐arid environment? Location: Gypsum outcrops near Belmonte del Tajo, Central Spain. Methods: We sampled a total of 45 (50 cm × 50 cm) plots, where we estimated the cover of every lichen and BSC‐forming lichen species. We also collected soil samples to estimate bacterial species richness and abundance, and to assess different surrogates of ecosystem functioning. We used path analysis to evaluate the relationships between the richness/abundance of above‐ and below‐ground species and ecosystem functioning. Results: We found that the greatest direct effect upon the ecosystem function matrix was that of the biological soil crust (BSC) richness matrix. A few bacterial species were sensitive to the lichen community, with a disproportionate effect of Collema crispum and Toninia sedifolia compared to their low abundance and frequency. The lichens Fulgensia subbracteata and Toninia spp. also had negative effects on bacteria, while Diploschistes diacapsis consistently affected sensitive bacteria, sometimes positively. Despite these results, very few of the BSC effects on ecosystem function could be ascribed to changes within the bacterial community. Conclusion: Our results suggest the primary importance of the richness of BSC‐forming lichens as drivers of small‐scale changes in ecosystem functioning. This study provides valuable insights on semi‐arid ecosystems where plant cover is spatially discontinuous and ecosystem function in plant interspaces is regulated largely by BSCs.  相似文献   

6.
There is a paucity of knowledge on microbial community diversity and naturally occurring seasonal variations in agricultural soil. For this purpose the soil microbial community of a wheat field on an experimental farm in The Netherlands was studied by using both cultivation-based and molecule-based methods. Samples were taken in the different seasons over a 1-year period. Fatty acid-based typing of bacterial isolates obtained via plating revealed a diverse community of mainly gram-positive bacteria, and only a few isolates appeared to belong to the Proteobacteria and green sulfur bacteria. Some genera, such as Micrococcus, Arthrobacter, and Corynebacterium were detected throughout the year, while Bacillus was found only in July. Isolate diversity was lowest in July, and the most abundant species, Arthrobacter oxydans, and members of the genus Pseudomonas were found in reduced numbers in July. Analysis by molecular techniques showed that diversity of cloned 16S ribosomal DNA (rDNA) sequences was greater than the diversity among cultured isolates. Moreover, based on analysis of 16S rDNA sequences, there was a more even distribution among five main divisions, Acidobacterium, Proteobacteria, Nitrospira, cyanobacteria, and green sulfur bacteria. No clones were found belonging to the gram-positive bacteria, which dominated the cultured isolates. Seasonal fluctuations were assessed by denaturing gradient gel electrophoresis. Statistical analysis of the banding patterns revealed significant differences between samples taken in different seasons. Cluster analysis of the patterns revealed that the bacterial community in July clearly differed from those in the other months. Although the molecule- and cultivation-based methods allowed the detection of different parts of the bacterial community, results from both methods indicated that the community present in July showed the largest difference from the communities of the other months. Efforts were made to use the sequence data for providing insight into more general ecological relationships. Based on the distribution of 16S rDNA sequences among the bacterial divisions found in this work and in literature, it is suggested that the ratio between the number of Proteobacteria and Acidobacterium organisms might be indicative of the trophic level of the soil.  相似文献   

7.
Rhizosphere communities are critical to plant and ecosystem function, yet our understanding of the role of disturbance in structuring these communities is limited. We tested the hypothesis that soil contamination with petroleum hydrocarbons (PHCs) alters spatial patterns of ecto- (ECM) and ericoid (ERM) mycorrhizal fungal and root-associated bacterial community structure in the shared rhizosphere of pine (Pinus contorta var. latifolia) and lingonberry (Vaccinium vitis-idaea) in reconstructed sub-boreal forest soils. Pine seeds and lingonberry cuttings were planted into containers with an organic (mor humus, FH or coarse woody debris, CWD) layer overlying sandy mineral horizons (Ae and Bf) of forest soils collected from field sites in central British Columbia, Canada. After 4 months, 219 mg cm-2 crude oil was applied to the soil surface of half of the systems; systems were sampled 1 or 16 weeks later. Composition, relative abundance and vertical distribution of pine ECMs were assessed using light microscopy; community profiles were generated using LH-PCR of ribosomal DNA. Multivariate analysis revealed that plant and soil factors were more important determinants of community composition than was crude oil treatment. Fungal communities differed between pine and lingonberry roots; ECM communities were structured by soil layer whereas ERM communities varied between FH and CWD soil systems. Bacterial communities varied between plants and soil layers, indicating properties of ECM and ERM rhizospheres and the soil environment influence bacterial niche differentiation. This integration of mycorrhizal and bacterial community analysis contributes to a greater understanding of forest soil sustainability in forest ecosystems potentially contaminated with PHCs.  相似文献   

8.
The metabolism of hydrogen evolved from HUP? legume nodules can alter bacterial community structures in the rhizosphere. Our earlier experiments demonstrated increased hydrogen uptake and appearance of white spots within bacterial colonies in H2-treated soil. We were also able to isolate hydrogen-oxidizing bacteria from soil samples exposed to hydrogen, but not from samples exposed to air. To further understand the effect of hydrogen metabolism on soil microbial communities, in this study 16S rRNA terminal restriction fragment (TRF) profiles of different soil samples exposed to hydrogen gas under laboratory, greenhouse, and field conditions were analyzed. Relationships between soil bacterial community structures from hydrogen-treated soil samples and controls, illustrated by UPGMA (unpaired group mathematical averages) dendrograms, indicated a significant contribution of hydrogen metabolism to the variation in bacterial community. The intensity variation of TRF peaks includes both hydrogen-utilizing bacteria, whose growth were stimulated by hydrogen exposure, and other bacterial species whose growth was inhibited. Comparison of TRF profiles between laboratory and greenhouse samples showed that T-RFLP is a useful technique in the detection of root-related effects on soil bacterial community structure.  相似文献   

9.
Global warming has exacerbated desertification in arid regions. Exploring the environmental variables and microbial communities that drive the dynamics of geographic patterns of desert crops is important for large-scale standardization of crops that can control desertification. Here, predictions based on future climate data from CMIP6 show that a steady expand in the suitable production areas for three desert plants (Cistanche deserticola, Cynomorium songaricum and Cistanche salsa) under global warming, demonstrating their high adaptability to future climate change. We examined the biogeography of three desert plant soil bacteria communities and assessed the environmental factors affecting the community assembly process. The α-diversity significantly decreased along elevated latitudes, indicating that the soil bacterial communities of the three species have latitude diversity patterns. The neutral community model evaluated 66.6% of the explained variance of the bacterial community in the soil of desert plants and Modified Stochasticity Ratio <0.5, suggesting that deterministic processes dominate the assembly of bacterial communities in three desert plants. Moreover, topography (longitude, elevation) and precipitation as well as key OTUs (OTU4911: Streptomyces eurythermus and OTU4672: Streptomyces flaveus) drive the colonization of three desert plants. This research offers a promising solution for desert management in arid areas under global warming.  相似文献   

10.
The bacterial community composition in small streams and a river in central Germany was examined by temperature gradient gel electrophoresis (TGGE) with PCR products of 16S rRNA gene fragments and sequence analysis. Complex TGGE band patterns suggested high levels of diversity of bacterial species in all habitats of these environments. Cluster analyses demonstrated distinct differences among the communities in stream and spring water, sandy sediments, biofilms on stones, degrading leaves, and soil. The differences between stream water and sediment were more significant than those between sites within the same habitat along the stretch from the stream source to the mouth. TGGE data from an entire stream course suggest that, in the upper reach of the stream, a special suspended bacterial community is already established and changes only slightly downstream. The bacterial communities in water and sediment in an acidic headwater with a pH below 5 were highly similar to each other but deviated distinctly from the communities at the other sites. As ascertained by nucleotide sequence analysis, stream water communities were dominated by Betaproteobacteria (one-third of the total bacteria), whereas sediment communities were composed mainly of Betaproteobacteria and members of the Fibrobacteres/Acidobacteria group (each accounting for about 25% of bacteria). Sequences obtained from bacteria from water samples indicated the presence of typical cosmopolitan freshwater organisms. TGGE bands shared between stream and soil samples, as well as sequences found in bacteria from stream samples that were related to those of soil bacteria, demonstrated the occurrence of some species in both stream and soil habitats. Changes in bacterial community composition were correlated with geographic distance along a stream, but in comparisons of different streams and rivers, community composition was correlated only with environmental conditions.  相似文献   

11.
Plant invasions pose a serious threat to native ecosystem structure and function. However, little is known about the potential role that rhizosphere soil microbial communities play in facilitating or resisting the spread of invasive species into native plant communities. The objective of this study was to compare the microbial communities of invasive and native plant rhizospheres in serpentine soils. We compared rhizosphere microbial communities, of two invasive species, Centaurea solstitialis (yellow starthistle) and Aegilops triuncialis (barb goatgrass), with those of five native species that may be competitively affected by these invasive species in the field (Lotus wrangelianus, Hemizonia congesta, Holocarpha virgata, Plantago erecta, and Lasthenia californica). Phospholipid fatty acid analysis (PLFA) was used to compare the rhizosphere microbial communities of invasive and native plants. Correspondence analyses (CA) of PLFA data indicated that despite yearly variation, both starthistle and goatgrass appear to change microbial communities in areas they invade, and that invaded and native microbial communities significantly differ. Additionally, rhizosphere microbial communities in newly invaded areas are more similar to the original native soil communities than are microbial communities in areas that have been invaded for several years. Compared to native plant rhizospheres, starthistle and goatgrass rhizospheres have higher levels of PLFA biomarkers for sulfate reducing bacteria, and goatgrass rhizospheres have higher fatty acid diversity and higher levels of biomarkers for sulfur-oxidizing bacteria, and arbuscular mycorrhizal fungi. Changes in soil microbial community composition induced by plant invasion may affect native plant fitness and/or ecosystem function.  相似文献   

12.
We examined succession of the rhizosphere microbiota of three model plants (Arabidopsis, Medicago and Brachypodium) in compost and sand and three crops (Brassica, Pisum and Triticum) in compost alone. We used serial inoculation of 24 independent replicate microcosms over three plant generations for each plant/soil combination. Stochastic variation between replicates was surprisingly weak and by the third generation, replicate microcosms for each plant had communities that were very similar to each other but different to those of other plants or unplanted soil. Microbiota diversity remained high in compost, but declined drastically in sand, with bacterial opportunists and putative autotrophs becoming dominant. These dramatic differences indicate that many microbes cannot thrive on plant exudates alone and presumably also require carbon sources and/or nutrients from soil. Arabidopsis had the weakest influence on its microbiota and in compost replicate microcosms converged on three alternative community compositions rather than a single distinctive community. Organisms selected in rhizospheres can have positive or negative effects. Two abundant bacteria are shown to promote plant growth, but in Brassica the pathogen Olpidium brassicae came to dominate the fungal community. So plants exert strong selection on the rhizosphere microbiota but soil composition is critical to its stability. microbial succession/ plant–microbe interactions/rhizosphere microbiota/selection.  相似文献   

13.
The period when the snowpack melts in late spring is a dynamic time for alpine ecosystems. The large winter microbial community begins to turn over rapidly, releasing nutrients to plants. Past studies have shown that the soil microbial community in alpine dry meadows of the Colorado Rocky Mountains changes in biomass, function, broad-level structure, and fungal diversity between winter and early summer. However, little specific information exists on the diversity of the alpine bacterial community or how it changes during this ecologically important period. We constructed clone libraries of 16S ribosomal DNA from alpine soil collected in winter, spring, and summer. We also cultivated bacteria from the alpine soil and measured the seasonal abundance of selected cultured isolates in hybridization experiments. The uncultured bacterial communities changed between seasons in diversity and abundance within taxa. The Acidobacterium division was most abundant in the spring. The winter community had the highest proportion of Actinobacteria and members of the Cytophaga/Flexibacter/Bacteroides (CFB) division. The summer community had the highest proportion of the Verrucomicrobium division and of β-Proteobacteria. As a whole, α-Proteobacteria were equally abundant in all seasons, although seasonal changes may have occurred within this group. A number of sequences from currently uncultivated divisions were found, including two novel candidate divisions. The cultured isolates belonged to the α-, β-, and γ-Proteobacteria, the Actinobacteria, and the CFB groups. The only uncultured sequences that were closely related to the isolates were from winter and spring libraries. Hybridization experiments showed that actinobacterial and β-proteobacterial isolates were most abundant during winter, while the α- and γ-proteobacterial isolates tested did not vary significantly. While the cultures and clone libraries produced generally distinct groups of organisms, the two approaches gave consistent accounts of seasonal changes in microbial diversity.  相似文献   

14.
The fungal community composition, size and several physico-chemical properties were individually investigated in ten macrophyte rhizospheric substrates using nested PCR-denaturing gradient gel electrophoresis and soil chemical methods. Results indicated that both Dothideomycetes and Sordariomycetes were dominant fungi in macrophyte rhizospheric substrates, and denitrifying fungi (Fusarium graminearum) was found in nine of ten macrophyte rhizospheres. Fungal Shannon-Wiener diversity index (H) and richness (S) in Thalia dealbata, Typha latifolia, Iris hexagona and Hemerocallis aurantiaca rhizospheres were higher than those in other six rhizospheres. Fungal number and biomass were 1.91 × 103 CFUs g?1 dw and 1.53 μg ergosterol g?1 dw in Iris pseudacor rhizosphere, and were greater than in other nine rhizospheres. The correlation analysis showed that fungal number and biomass significantly and positively correlated to total soil phosphorus, while fungal H and S were significantly and negatively correlated to total organic carbon. The principal components analysis (PCA) showed that the fungal community significantly divided ten macrophyte rhizospheres into four groups, showing the significant difference of fungal communities among ten rhizospheric substrates. The current study revealed for the first time the importance of rhizospheric fungal community in distinguishing macrophyte rhizospheres, thus will undoubtedly widen our insight into fungal communities in aquatic rhizospheres.  相似文献   

15.

Background and aims

Biodegradation of polycyclic aromatic hydrocarbons (PAHs) is accelerated in the presence of plants, due to the stimulation of rhizosphere microbes by plant exudates (nonspecific enhancement). However, plants may also recruit specific microbial groups in response to PAH stress (specific enhancement). In this study, plant effects on the development of rhizosphere microbial communities in heterogeneously contaminated soils were assessed for three grasses (ryegrass, red fescue and Yorkshire fog) and four legumes (white clover, chickpea, subterranean clover and red lentil).

Methods

Plants were cultivated using a split-root model with their roots divided between two independent pots containing either uncontaminated soil or PAH-contaminated soil (pyrene or phenanthrene). Microbial community development in the two halves of the rhizosphere was assessed by T-RFLP (bacterial and fungal community) or DGGE (bacterial community), and by 16S rRNA gene tag-pyrosequencing.

Results

In legume rhizospheres, the microbial community structure in the uncontaminated part of the split-root model was significantly influenced by the presence of PAH-contamination in the other part of the root system (indirect effect), but this effect was not seen for grasses. In the contaminated rhizospheres, Verrucomicrobia and Actinobacteria showed increased populations, and there was a dramatic increase in Denitratisoma numbers, suggesting that this genus may be important in rhizoremediation processes.

Conclusion

Our results show that Trifolium and other legumes respond to PAH-contamination stress in a systemic manner, to influence the microbial diversity in their rhizospheres.  相似文献   

16.
Bacterial Succession in a Petroleum Land Treatment Unit   总被引:10,自引:1,他引:9       下载免费PDF全文
Bacterial community dynamics were investigated in a land treatment unit (LTU) established at a site contaminated with highly weathered petroleum hydrocarbons in the C10 to C32 range. The treatment plot, 3,000 cubic yards of soil, was supplemented with nutrients and monitored weekly for total petroleum hydrocarbons (TPH), soil water content, nutrient levels, and aerobic heterotrophic bacterial counts. Weekly soil samples were analyzed with 16S rRNA gene terminal restriction fragment (TRF) analysis to monitor bacterial community structure and dynamics during bioremediation. TPH degradation was rapid during the first 3 weeks and slowed for the remainder of the 24-week project. A sharp increase in plate counts was reported during the first 3 weeks, indicating an increase in biomass associated with petroleum degradation. Principal components analysis of TRF patterns revealed a series of sample clusters describing bacterial succession during the study. The largest shifts in bacterial community structure began as the TPH degradation rate slowed and the bacterial cell counts decreased. For the purpose of analyzing bacterial dynamics, phylotypes were generated by associating TRFs from three enzyme digests with 16S rRNA gene clones. Two phylotypes associated with Flavobacterium and Pseudomonas were dominant in TRF patterns from samples during rapid TPH degradation. After the TPH degradation rate slowed, four other phylotypes gained dominance in the community while Flavobacterium and Pseudomonas phylotypes decreased in abundance. These data suggest that specific phylotypes of bacteria were associated with the different phases of petroleum degradation in the LTU.  相似文献   

17.
Barley was grown in soil with either bacteria and a mixed protozoan community (Mixed protozoa) or bacteria and a single vahlkampfiid amoebal species (Single amoeba). We assessed the influence of plant age (day 29, 43 and 57 after sowing) on two aspects of rhizosphere bacterial functioning: (1) the proportion of indole-3-acetic acid (IAA) producing bacteria and (2) the effect of mixed rhizosphere bacterial assemblages on barley seedling root growth in an agar based assay. The proportion of IAA producers was significantly lower at day 57 than at day 29 and 43, and mixed bacterial assemblages extracted from rhizospheres of 29 days old plants were significantly less harmful to seedling growth than bacterial assemblages from older plants. Hence both assays indicated that bacterial communities from rhizospheres of older plants were less beneficial for root growth than bacterial communities from younger plants. Genetic fingerprinting of rhizosphere bacterial communities was compared by use of length heterogeneity polymerase chain reaction (LH-PCR). This analysis showed a clear succession from the inoculum bacterial community with a rather low diversity to a community with much higher diversity at day 29. However, diversity did not change after day 29, and no relationship between protozoan treatment nor plant age and genetic fingerprinting was found. Responsible Editor: Petra Marschner  相似文献   

18.
赵帅  周娜  赵振勇  张科  吴国华  田长彦 《微生物学报》2016,56(10):1583-1594
【目的】揭示同一盐渍环境中不同种盐生植物根部内生细菌群落多样性特征和分布规律,结合根际土壤理化因子探讨其对内生细菌群落结构的影响。【方法】通过罗氏454高通量测序获得内生细菌16S r RNA片段,然后进行生物信息分析。【结果】研究的16种盐生植物其内生细菌群落主要由Proteobacteria、Tenericutes、Actinobacteria和Firmicutes 4个门的细菌组成。从植物"种"的水平来看,不同种盐生植物内生细菌群落存在差异;从植物"属"的水平来看,同一属的盐生植物内生细菌相似;从植物"科"的水平来看,藜科盐生植物内生细菌以Actinobacteria和Proteobacteria门为主;蒺藜科盐生植物内生细菌以Proteobacteria门为主;柽柳科盐生植物内生细菌以Tenericutes门为主;白花丹科盐生植物内生细菌以Proteobacteria、Fimicutes和Actinobacteria门为主。根际土壤中Cl~–含量对盐生植物内生细菌群落变化具有显著影响;而Cl~–、Mg~(2+)和总氮组成的集合与内生细菌群落结构相关性最高。【结论】盐生植物内生细菌多样性丰富。在同一盐渍生境中,盐生植物内生细菌群落分布呈现宿主的种属特异性,根际土壤中Cl~–是影响其内生细菌群落变化的主要驱动因素之一。  相似文献   

19.
Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.  相似文献   

20.
The use of genetically modified (GM) plants still raises concerns about their environmental impact. The present study aimed to evaluate the possible effects of GM maize, in comparison to the parental line, on the structure and abundance of microbial communities in the rhizosphere. Moreover, the effect of soil type was addressed. For this purpose, the bacterial and fungal communities associated with the rhizosphere of GM plants were compared by culture-independent methodologies to the near-isogenic parental line. Two different soils and three stages of plant development in two different periods of the year were included. As evidenced by principal components analysis (PCA) of the PCR-DGGE profiles of evaluated community, clear differences occurred in these rhizosphere communities between soils and the periods of the year that maize was cultivated. However, there were no discernible effects of the GM lines as compared to the parental line. For all microbial communities evaluated, soil type and the period of the year that the maize was cultivated were the main factors that influenced their structures. No differences were observed in the abundances of total bacteria between the rhizospheres of GM and parental plant lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号