首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
How complex life cycles of parasites are maintained is still a fascinating and unresolved topic. Complex life cycles using three host species, free-living stages, asexual and sexual reproduction are widespread in parasitic helminths. For such life cycles, we propose here that maintaining a second intermediate host in the life cycle can be advantageous for the individual parasite to increase the intermixture of different clones and therefore decrease the risk of matings between genetically identical individuals in the definitive host. Using microsatellite markers, we show that clone mixing occurs from the first to the second intermediate host in natural populations of the eye-fluke Diplostomum pseudospathaceum. Most individuals released by the first intermediate host belonged to one clone. In contrast, the second intermediate host was infected with a diverse array of mostly unique parasite genotypes. The proposed advantage of increased parasite clone intermixture may be a novel selection pressure favouring the maintenance of complex life cycles.  相似文献   

2.
Switching from one host to the next is a critical life-history transition in parasites with complex life cycles. Growth and mortality rates are thought to influence the optimal time and size at transmission, but these rates are difficult to measure in parasites. The parasite life cycle, in particular the trophic link along which transmission occurs, may be a reasonable proxy for these rates, leading to the hypothesis that life cycle should shape life-history strategy. We compiled data on the size and age at infectivity for trophically transmitted helminths (i.e., acanthocephalans, cestodes, and nematodes), and then categorized species into trophic links (e.g., planktonic crustaceans to fish, insects to terrestrial vertebrates, etc.). Comparative analyses that explicitly included stabilizing selection within trophic links fit the data significantly better than random walk models, indicating that parasites with different life cycles have different optimal times/sizes for host switching. The major helminth groups have often independently evolved similar life cycles, and we show that this has frequently led to convergent and/or parallel evolution of size and age at infectivity. This suggests that for particular life cycles there are universal optimal transmission strategies, applicable to widely divergent taxa, although the cases of parallelism might indicate that lineage-specific constraints sometimes prevent evolution to a single adaptive peak.  相似文献   

3.
The family Adelgidae is a small group of insects within Aphidoidea (Hemiptera). Adelgids are typically holocyclic with host‐alternation between the primary and secondary hosts, but some anholocyclic species persist either on the primary or secondary host. Like Aphididae, complexities and variation of adelgid life cycles are good models for understanding the evolution of complex life cycles. In this review, we outline the complex life cycles of adelgids, and current status and recent advances in adelgid life cycle studies. We also discuss the evolution of adelgid life cycles by comparing them to closely related aphid life cycles. A switch from holocycly to anholocycly on the primary host needs evolutionary innovations in gallicola behavior and reproduction. This radical evolution can be explained by mutations in a regulatory system that controls the sequence of gene sets producing phenotypes of one morph. In contrast, anholocycly on the secondary host consists of a series of exulis generations already existing in the holocycle. Thus, it may evolve by loss of primary‐host generations through extinction of the primary host, expansion beyond the geographical range of the primary host, or loss of male‐producing sexuparae that return to the primary host. Although the holocycle and its anholocyclic derivatives have been regarded as different species, morphological, ecological and genetic differences are too subtle to separate them into different species. The holocycle and its anholocyclic derivatives should not be split into different species without clearly identifiable morphological differences.  相似文献   

4.
Developmental plasticity in helminth life cycles serves, in most cases, to increase the probability of transmission between hosts, suggesting that the necessity to achieve transmission is a prominent selective pressure in the evolution of this phenomenon. Some evidence suggests that digenean trematodes from the genus Schistosoma are also capable of limited developmental responses to host factors. Here we review the currently available data on this phenomenon and attempt to draw comparisons with similar processes in the life cycles of other helminths. At present the biological significance of developmental responses by schistosomes under laboratory conditions remains unclear. Further work is needed to determine whether developmental plasticity plays any role in increasing the probability of schistosome transmission and life cycle propagation under adverse conditions, as it does in other helminth life cycles.  相似文献   

5.
Studies of the life cycle stages of digeneans and oncophoreans (= monogeneans and cestodes) indicate that these two groups had separate origins from free-living rhabdocoel-like ancestors and that the original single-host life cycles became 2-host cycles through accidental ingestion, in digeneans by free-swimming adults being ingested by vertebrates, and in cestodes by eggs being ingested by invertebrates. In both lines a third host was incorporated as a means of increasing the efficiency of transfer between hosts, in digeneans between the primary mollusc and the secondary vertebrate, and in cestodes between the secondary (“first intermediate”) host and the primary vertebrate host.  相似文献   

6.
Links between parasites and food webs are evolutionarily ancient but dynamic: life history theory provides insights into helminth complex life cycle origins. Most adult helminths benefit by sexual reproduction in vertebrates, often high up food chains, but direct infection is commonly constrained by a trophic vacuum between free‐living propagules and definitive hosts. Intermediate hosts fill this vacuum, facilitating transmission to definitive hosts. The central question concerns why sexual reproduction, and sometimes even larval growth, is suppressed in intermediate hosts, favouring growth arrest at larval maturity in intermediate hosts and reproductive suppression until transmission to definitive hosts? Increased longevity and higher growth in definitive hosts can generate selection for larger parasite body size and higher fecundity at sexual maturity. Life cycle length is increased by two evolutionary mechanisms, upward and downward incorporation, allowing simple (one‐host) cycles to become complex (multihost). In downward incorporation, an intermediate host is added below the definitive host: models suggest that downward incorporation probably evolves only after ecological or evolutionary perturbations create a trophic vacuum. In upward incorporation, a new definitive host is added above the original definitive host, which subsequently becomes an intermediate host, again maintained by the trophic vacuum: theory suggests that this is plausible even under constant ecological/evolutionary conditions. The final cycle is similar irrespective of its origin (upward or downward). Insights about host incorporation are best gained by linking comparative phylogenetic analyses (describing evolutionary history) with evolutionary models (examining selective forces). Ascent of host trophic levels and evolution of optimal host taxa ranges are discussed.  相似文献   

7.
The Adelgidae form a small group of insects in the Aphidoidea. They are cyclically parthenogenetic with host alternating, multiple-generation complex life cycles and are restricted to certain host genera in the Pinaceae. Species that host alternate always have Picea as the primary host where sexual reproduction and gall formation occur, and another genus in the Pinaceae as the secondary host where a series of parthenogenetic generations are produced. Other species that do not host alternate complete their entire life cycle on one host and only reproduce parthenogenetically. We studied relationships within Adelgidae using DNA sequences from the mitochondrial COI, COII, and cytb genes, and the nuclear EF1alpha gene. Analysis of the combined data resulted in a well-resolved phylogeny in which the major adelgid clades correspond neatly to their association with secondary host genera. Specialization on each secondary host genus occurred only once and was followed by diversification on the host genus. Molecular dating of divergence times in the Adelgidae suggest that diversification among host genera occurred in the Late Cretaceous and Early Tertiary when the Pinaceae genera were diverging. It is not clear, however, whether the Adelgidae and Pinaceae co-diversified because the relationships among the Pinaceae genera are not fully resolved. We discuss implications for adelgid taxonomy, life cycle evolution, and evolution of the interaction between adelgids and their host plants.  相似文献   

8.
Some helminths have by their evolution learnt to systemically invade a host organism, and to select specific organs or host cell types as predilection site to reside, maturate or even proliferate. These parasites needed to develop complex and unique strategies to escape host immune reactions. The present work sheds some light into the strategy developed by three different helminths (Echinococcus multilocularis, Trichinella spiralis and Toxocara conis) to survive in the host organ or host cell, respectively. The crucial role of periparasitic host reactions that may help the host to control the parasite, but which may also be responsible for immunopathological events harmful to the host himself, are elucidated as well. Finally, for these three parasites selected, the murine host appears an acceptable model for carrying out experimental studies, as for these parasites, rodents as well as humans become infected in the parasites natural life cycle. Therefore, conclusions drawn from murine experiments may provide much more reliable data in view of their relevance for the human infection, a fact that frequently lacks when using mice as experimental model for other helminths.  相似文献   

9.
Complex life cycles provide advantages to parasites (longer life span, higher fecundity, etc.), but also represent a series of unlikely events for which many adaptations have evolved (asexual multiplication, host finding mechanisms, etc.). Some parasites use a radical strategy where the definitive host is dropped; life cycle abbreviation is most often achieved through progenesis (i.e. early maturation) and reproduction in the second intermediate host. In many progenetic species, both the typical and abbreviated life cycles are maintained. However, conditions that trigger the adoption of one or the other strategy, and the pros and cons of each parasite life history strategy, are often complex and poorly understood. We used experimental infections with the trematode Coitocaecum parvum in its fish definitive host to test for potential costs of progenesis in terms of lifespan and fecundity. We show that individuals that adopt progenesis in the intermediate host are still able to establish in the definitive host and achieve higher survival and fecundity than conspecifics adopting the typical three-host life cycle. Our results and that of previous studies show that there seems to be few short-term costs associated with progenesis in C. parvum. Potential costs of self-fertilization and inbreeding are often suggested to select for the maintenance of both life-history strategies in species capable of facultative progenesis. We suggest that, at least for our focal species, there are more constraints than costs limiting its adoption. Progenesis and the abbreviated cycle may become the typical life-history strategy while reproduction in the vertebrate definitive host is now a secondary alternative when progenesis is impossible (e.g. limited host resources, etc.). Whether this pattern can be generalized to other progenetic trematodes is unknown and would require further studies.  相似文献   

10.
11.
The complex life cycles of parasites are thought to have evolved from simple one-host cycles by incorporating new hosts. Nevertheless, complex developmental routes present parasites with a sequence of highly unlikely transmission events in order to complete their life cycles. Some trematodes like Coitocaecum parvum use facultative life cycle abbreviation to counter the odds of trophic transmission to the definitive host. Parasites adopting life cycle truncation possess the ability to reproduce within their intermediate host, using progenesis, without the need to reach the definitive host. Usually, both abbreviated and normal life cycles are observed in the same population of parasites. Here, we demonstrate experimentally that C. parvum can modulate its development in its amphipod intermediate host and adopt either the abbreviated or the normal life cycle depending on current transmission opportunities or the degree of intra-host competition among individual parasites. In the presence of cues from its predatory definitive host, the parasite is significantly less likely to adopt progenesis than in the absence of such cues. An intermediate response is obtained when the parasites are exposed to cues from non-host predators. The adoption of progenesis is less likely, however, when two parasites share the resource-limited intermediate host. These results show that parasites with complex developmental routes have transmission strategies and perception abilities that are more sophisticated than previously thought.  相似文献   

12.
Parasitic worms (helminths) frequently have complex life cycles in which they are transmitted trophically between two or more successive hosts. Sexual reproduction often takes place in high trophic-level (TL) vertebrates, where parasites can grow to large sizes with high fecundity. Direct infection of high TL hosts, while advantageous, may be unachievable for parasites constrained to transmit trophically, because helminth propagules are unlikely to be ingested by large predators. Lack of niche overlap between propagule and definitive host (the trophic transmission vacuum) may explain the origin and/or maintenance of intermediate hosts, which overcome this transmission barrier. We show that nematodes infecting high TL definitive hosts tend to have more successive hosts in their life cycles. This relationship was modest, though, driven mainly by the minimum TL of hosts, suggesting that the shortest trophic chains leading to a host define the boundaries of the transmission vacuum. We also show that alternative modes of transmission, like host penetration, allow nematodes to reach high TLs without intermediate hosts. We suggest that widespread omnivory as well as parasite adaptations to increase transmission probably reduce, but do not eliminate, the barriers to the transmission of helminths through the food web.  相似文献   

13.
Climate change is expected to alter the dynamics of host–parasite systems globally. One key element in developing predictive models for these impacts is the life cycle of the parasite. It is, for example, commonly assumed that parasites with an indirect life cycle would be more sensitive to changing environmental conditions than parasites with a direct life cycle due to the greater chance that at least one of their obligate host species will go extinct. Here, we challenge this notion by contrasting parasitic nematodes with a direct life cycle against those with an indirect life cycle. Specifically, we suggest that behavioral thermoregulation by the intermediate host may buffer the larvae of indirectly transmitted parasites against temperature extremes, and hence climate warming. We term this the ‘shelter effect’. Formalizing each life cycle in a comprehensive model reveals a fitness advantage for the direct life cycle over the indirect life cycle at low temperatures, but the shelter effect reverses this advantage at high temperatures. When examined for seasonal environments, the models suggest that climate warming may in some regions create a temporal niche in mid‐summer that excludes parasites with a direct life cycle, but allows parasites with an indirect life cycle to persist. These patterns are amplified if parasite larvae are able to manipulate their intermediate host to increase ingestion probability by definite hosts. Furthermore, our results suggest that exploiting the benefits of host sheltering may have aided the evolution of indirect life cycles. Our modeling framework utilizes the Metabolic Theory of Ecology to synthesize the complexities of host behavioral thermoregulation and its impacts on various temperature‐dependent parasite life history components in a single measure of fitness, R0. It allows quantitative predictions of climate change impacts, and is easily generalized to many host–parasite systems.  相似文献   

14.
Numerous parasite species have evolved complex life cycles with multiple, subsequent hosts. In trematodes, each transmission event in multi-host life cycles selects for various adaptations, one of which is facultative life cycle abbreviation. This typically occurs through progenesis, i.e., precocious maturity and reproduction via self-fertilization within the second intermediate host. Progenesis eliminates the need for the definitive host and facilitates life cycle completion. Adopting a progenetic cycle may be a conditional strategy in response to environmental cues related to low probability of transmission to the definitive host. Here, the effects of environmental factors on the reproductive strategy of the progenetic trematode Stegodexamene anguillae were investigated using comparisons among populations. In the 3-host life cycle, S. anguillae sexually reproduces within eel definitive hosts, whereas in the progenetic life cycle, S. anguillae reproduces by selfing within the metacercaria cyst in tissues of small fish intermediate hosts. Geographic variation was found in the frequency of progenesis, independent of eel abundance. Progenesis was affected by abundance and length of the second intermediate fish host as well as encystment site within the host. The present study is the first to compare life cycle strategies among parasite populations, providing insight into the often unrecognized plasticity in parasite developmental strategies and transmission.  相似文献   

15.
The helminths of 218 white-toothed shrews from 29 sites in 2 biotopes in the Albufera Natural Park (Valencia, Spain) were examined from July 1990 to August 1991. An association analysis of helminths occurring at a prevalence of more than 4% was carried out for 4 species of cestodes located in the intestine (Hymenolepis pistillum, H. scalaris, H. tiara, and Pseudhymenolepis redonica) and 3 species of nematodes (Pseudophysaloptera sp. located in the stomach, Stammerinema rhopocephala larvae in the intestine and abdominal cavity, and Porrocaecum sp. in the thoracic and abdominal cavities). Bivariate (species pairs) versus multivariate analyses (associations within the entire set of species) were performed of presence-absence and of quantitative records (influence of intensity on associations). The associations were evaluated with respect to the sex and age of the host and to the sampling date and sites. The host and environment played a limited role, and the major determinant of species assemblage was phylogenetic. Positive associations were found among both the cestodes and the nematodes, whereas negative associations were found between cestodes and nematodes. The type of life cycle was probably the second greatest determinant of species associations. Nematodes using shrews as a paratenic host or as their definitive host were both positively associated.  相似文献   

16.
Both theoretical arguments and empirical evidence suggest that parasite transmission depends on host density. In helminths with complex life cycles, however, it is not clear which host, if any, is the most important. Here, the relationships between the abundance of metacercariae in second intermediate hosts, and the local density of both the first and second intermediate hosts of two trematode species, are investigated. Samples of the snail Potamopyrgus antipodarum, the amphipod Paracalliope fluviatilis and the isopod Austridotea annectens were collected from ten stations in a New Zealand lake. In the trematode Coitocaecum parvum, neither the density of the snail first intermediate host nor that of the amphipod second intermediate host correlated with infection levels in amphipods. In contrast, in the trematode Microphallus, infection levels in isopod second intermediate hosts were positively associated with isopod density and negatively associated with the density of snail first intermediate hosts. These relationships are explained by a negative correlation between snail and isopod densities, mediated in part by their different use of macrophyte beds in the lake. Overall, the results suggest that, at least for Microphallus, local infection levels depend on local intermediate host densities.  相似文献   

17.
In complex life cycles, larval helminths typically migrate from the gut to exploit the tissues of their intermediate hosts. Yet the definitive host's gut is overwhelmingly the most favoured site for adult helminths to release eggs. Vertebrate nematodes with one-host cycles commonly migrate to a site in the host away from the gut before returning to the gut for reproduction; those with complex cycles occupy sites exclusively in the intermediate host's tissues or body spaces, and may or may not show tissue migration before (typically) returning to the gut in the definitive host. We develop models to explain the patterns of exploitation of different host sites, and in particular why larval helminths avoid the intermediate host's gut, and adult helminths favour it. Our models include the survival costs of migration between sites, and maximise fitness (=expected lifetime number of eggs produced by a given helminth propagule) in seeking the optimal strategy (host gut versus host tissue exploitation) under different growth, mortality, transmission and reproductive rates in the gut and tissues (i.e. sites away from the gut). We consider the relative merits of the gut and tissues, and conclude that (i) growth rates are likely to be higher in the tissues, (ii) mortality rates possibly higher in the gut (despite the immunological inertness of the gut lumen), and (iii) that there are very high benefits to egg release in the gut. The models show that these growth and mortality relativities would account for the common life history pattern of avoidance of the intermediate host's gut because the tissues offer a higher growth rate/mortality rate ratio (discounted by the costs of migration), and make a number of testable predictions. Though nematode larvae in paratenic hosts usually migrate to the tissues, unlike larvae in intermediates, they sometimes remain in the gut, which is predicted since in paratenics mortality rate and migration costs alone determine the site to be exploited.  相似文献   

18.

Background  

Most aphid species complete their life cycle on the same set of host-plant species, but some (heteroecious species) alternate between different hosts, migrating from primary (woody) to secondary (herbaceous) host plants. The evolutionary processes behind the evolution of this complex life cycle have often been debated. One widely accepted scenario is that heteroecy evolved from monoecy on woody host plants. Several shifts towards monoecy on herbaceous plants have subsequently occurred and resulted in the radiation of aphids. Host alternation would have persisted in some cases due to developmental constraints preventing aphids from shifting their entire life cycle to herbaceous hosts (which are thought to be more favourable). According to this scenario, if aphids lose their primary host during evolution they should not regain it. The genus Brachycaudus includes species with all the types of life cycle (monoecy on woody plants, heteroecy, monoecy on herbs). We used this genus to test hypotheses concerning the evolution of life cycles in aphids.  相似文献   

19.
In complex cycles, helminth larvae in their intermediate hosts typically grow to a fixed size. We define this cessation of growth before transmission to the next host as growth arrest at larval maturity (GALM). Where the larval parasite controls its own growth in the intermediate host, in order that growth eventually arrests, some form of size- or time-dependent increase in its death rate must apply. In contrast, the switch from growth to sexual reproduction in the definitive host can be regulated by constant (time-independent) mortality as in standard life history theory. We here develop a step-wise model for the evolution of complex helminth life cycles through trophic transmission, based on the approach of Parker et al. [2003a. Evolution of complex life cycles in helminth parasites. Nature London 425, 480-484], but which includes size- or time-dependent increase in mortality rate. We assume that the growing larval parasite has two components to its death rate: (i) a constant, size- or time-independent component, and (ii) a component that increases with size or time in the intermediate host. When growth stops at larval maturity, there is a discontinuous change in mortality to a constant (time-independent) rate. This model generates the same optimal size for the parasite larva at GALM in the intermediate host whether the evolutionary approach to the complex life cycle is by adding a new host above the original definitive host (upward incorporation), or below the original definitive host (downward incorporation). We discuss some unexplored problems for cases where complex life cycles evolve through trophic transmission.  相似文献   

20.
A total of 1,115 longnose dace, Rhinichthys cataractae (family Cyprinidae), were examined for parasites from May 1983 through October 1986 from 3 localities in the Ford River in Michigan's Upper Peninsula. Thirteen parasite species (1 Monogenea, 2 Digenea, 2 Cestoda, 4 Nematoda, 1 Acanthocephala, 3 Protozoa) infected dace. The parasite faunas of dace, taxonomically and in species number, were similar between localities. Posthodiplostomum minimum minimum, Neascus sp., and Rhabdochona canadensis were the most common helminths infecting dace from each locality. The first 2 species did not exhibit consistent seasonal infection patterns between years, whereas the prevalence and mean intensity of R. canadensis in dace from the downriver locality were higher in summer 1983, 1984, and 1985. The intensity of infection of each of these helminth species significantly increased with host length. The prevalences and mean intensities of P. m. minimum, Neascus sp., and R. canadensis as well as the helminth infracommunity diversity were highest in dace from the upriver locality. The major factors that influenced parasite intensity were environmental factors that occurred when and where a fish began its life, the sequence of events that occurred in each habitat the fish encountered during its life, and the length of exposure (age of fish). Dace have isolationist helminth infracommunities arising from factors including ectothermy, a simple enteric system, restricted vagility, and being gape-limited. Allogenic helminths with indirect life cycles predominate in the depauperate helminth fauna of dace.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号