首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mitochondria contain approximately 1000 different proteins, which are located in four different compartments, outer membrane, inner membrane, intermembrane space and matrix. The vast majority of these proteins has to be imported from the cytosol. Therefore, sophisticated molecular machineries have evolved that mediate protein translocation across or insertion into mitochondrial membranes and subsequent assembly into multi-subunit complexes. While the initial entry of virtually all mitochondrial proteins is mediated by the general import pore of the outer membrane, at least four different downstream pathways are dedicated to import and assembly of proteins into a specific compartment.  相似文献   

2.
Mitochondria import more than 1,000 different proteins from the cytosol. The proteins are synthesized as precursors on cytosolic ribosomes and are translocated by protein transport machineries of the mitochondrial membranes. Five main pathways for protein import into mitochondria have been identified. Most pathways use the translocase of the outer mitochondrial membrane (TOM) as the entry gate into mitochondria. Depending on specific signals contained in the precursors, the proteins are subsequently transferred to different intramitochondrial translocases. In this article, we discuss the connection between protein import and mitochondrial membrane architecture. Mitochondria possess two membranes. It is a long‐standing question how contact sites between outer and inner membranes are formed and which role the contact sites play in the translocation of precursor proteins. A major translocation contact site is formed between the TOM complex and the presequence translocase of the inner membrane (TIM23 complex), promoting transfer of presequence‐carrying preproteins to the mitochondrial inner membrane and matrix. Recent findings led to the identification of contact sites that involve the mitochondrial contact site and cristae organizing system (MICOS) of the inner membrane. MICOS plays a dual role. It is crucial for maintaining the inner membrane cristae architecture and forms contacts sites to the outer membrane that promote translocation of precursor proteins into the intermembrane space and outer membrane of mitochondria. The view is emerging that the mitochondrial protein translocases do not function as independent units, but are embedded in a network of interactions with machineries that control mitochondrial activity and architecture.  相似文献   

3.
Sorting pathways of mitochondrial inner membrane proteins   总被引:14,自引:0,他引:14  
Two distinct pathways of sorting and assembly of nuclear-encoded mitochondrial inner membrane proteins are described. In the first pathway, precursor proteins that carry amino-terminal targeting signals are initially translocated via contact sites between both mitochondrial membranes into the mitochondrial matrix. They become proteolytically processed, interact with the 60-kDa heat-shock protein hsp60 in the matrix and are retranslocated to the inner membrane. The sorting of subunit 9 of Neurospora crassa F0-ATPase has been studied as an example. F0 subunit 9 belongs to that class of nuclear-encoded mitochondrial proteins which are evolutionarily derived from a prokaryotic ancestor according to the endosymbiont hypothesis. We suggest that after import into mitochondria, these proteins follow the ancestral sorting and assembly pathways established in prokaryotes (conservative sorting). On the other hand, ADP/ATP carrier was found not to require interaction with hsp60 for import and assembly. This agrees with previous findings that the ADP/ATP carrier possesses non-amino-terminal targeting signals and uses a different import receptor to other mitochondrial precursor proteins. It is proposed that the ADP/ATP carrier represents a class of mitochondrial inner membrane proteins which do not have a prokaryotic equivalent and thus appear to follow a non-conservative sorting pathway.  相似文献   

4.
Mitochondria are surrounded by two distinct membranes: the outer and the inner membrane. The mitochondrial outer membrane mediates numerous interactions between the mitochondrial metabolic and genetic systems and the rest of the eukaryotic cell. Proteins of this membrane are nuclear-encoded and synthesized as precursor proteins in the cytosol. They are targeted to the mitochondria and inserted into their target membrane via various pathways. This review summarizes our current knowledge of the sorting signals for this specific targeting and describes the mechanisms by which the mitochondrial import machineries recognize precursor proteins, mediate their membrane integration and facilitate assembly into functional complexes.  相似文献   

5.
The inner mitochondrial membrane harbors a large number of proteins that display a wide range of topological arrangements. The majority of these proteins are encoded in the cell's nucleus, but a few polytopic proteins, all subunits of respiratory chain complexes are encoded by the mitochondrial genome. A number of distinct sorting mechanisms exist to direct these proteins into the mitochondrial inner membrane. One of these pathways involves the export of proteins from the matrix into the inner membrane and is used by both proteins synthesized within the mitochondria, as well as by a subset of nuclear encoded proteins. Prior to embarking on the export pathway, nuclear encoded proteins using this sorting route are initially imported into the mitochondrial matrix from the cytosol, their site of synthesis. Protein export from the matrix into the inner membrane bears similarities to Sec-independent protein export in bacteria and requires the function of the Oxa1 protein. Oxa1 is a component of a general protein insertion site in yeast mitochondrial inner membrane used by both nuclear and mitochondrial DNA encoded proteins. Oxa1 is a member of the conserved Oxa1/YidC/Alb3 protein family found throughout prokaryotes throughout eukaryotes (where it is found in mitochondria and chloroplasts). The evidence to demonstrate that the Oxa1/YidC/Alb3 protein family represents a novel evolutionarily conserved membrane insertion machinery is reviewed here.  相似文献   

6.
线粒体含有约1000种蛋白质,其中99%由细胞核DNA编码,在细胞质核糖体上合成后被分别转运至线粒体的内膜或外膜上、基质或膜间隙中。由众多分子机器组成的线粒体蛋白质转运系统参与了该生物学过程的执行。线粒体DNA编码的13种蛋白质也由该系统转运至线粒体内膜。本文就线粒体蛋白质转运系统中线粒体前体蛋白质的定位分选信号、转运复合物和转运途径作简要介绍。  相似文献   

7.
The mitochondrial intermembrane space (IMS) is the most constricted sub-mitochondrial compartment, housing only about 5% of the mitochondrial proteome, and yet is endowed with the largest variability of protein import mechanisms. In this review, we summarize our current knowledge of the major IMS import pathway based on the oxidative protein folding pathway and discuss the stunning variability of other IMS protein import pathways. As IMS-localized proteins only have to cross the outer mitochondrial membrane, they do not require energy sources like ATP hydrolysis in the mitochondrial matrix or the inner membrane electrochemical potential which are critical for import into the matrix or insertion into the inner membrane. We also explore several atypical IMS import pathways that are still not very well understood and are guided by poorly defined or completely unknown targeting peptides. Importantly, many of the IMS proteins are linked to several human diseases, and it is therefore crucial to understand how they reach their normal site of function in the IMS. In the final part of this review, we discuss current understanding of how such IMS protein underpin a large spectrum of human disorders.  相似文献   

8.
9.
T Komiya  M Sakaguchi    K Mihara 《The EMBO journal》1996,15(2):399-407
Two ATP-dependent cytosolic chaperones, mitochondrial import stimulation factor (MSF) and hsp70, are known to be involved in the import of precursor proteins into mitochondria. Hsp70 generally recognizes unfolded proteins, while MSF specifically recognizes mitochondrial precursor proteins and targets them to mitochondria in a NEM-sensitive manner. Here we analyzed the relative contribution of these chaperones in the import process and confirmed that the precursor proteins are targeted to mitochondria via two distinct pathways: one requiring MSF and the other requiring hsp70. Both pathways depend on distinct proteinaceous components of the outer mitochondrial membrane. The MSF-dependent pathway is NEM-sensitive and requires the hydrolysis of extra-mitochondrial ATP for the release of MSF from the mitochondrial import receptor, whereas the hsp70-dependent pathway is NEM-sensitive and does not require extra-mitochondrial ATP. The NEM-insensitive, hsp70-dependent import became NEM-sensitive depending on the amount of MSF added. The relative importance of the two pathways appears to be determined by the affinities of MSF and hsp70 for the precursor proteins.  相似文献   

10.
《The Journal of cell biology》1988,107(6):2483-2490
The precursor of porin, a mitochondrial outer membrane protein, competes for the import of precursors destined for the three other mitochondrial compartments, including the Fe/S protein of the bc1- complex (intermembrane space), the ADP/ATP carrier (inner membrane), subunit 9 of the F0-ATPase (inner membrane), and subunit beta of the F1- ATPase (matrix). Competition occurs at the level of a common site at which precursors are inserted into the outer membrane. Protease- sensitive binding sites, which act before the common insertion site, appear to be responsible for the specificity and selectivity of mitochondrial protein uptake. We suggest that distinct receptor proteins on the mitochondrial surface specifically recognize precursor proteins and transfer them to a general insertion protein component (GIP) in the outer membrane. Beyond GIP, the import pathways diverge, either to the outer membrane or to translocation contact-sites, and then subsequently to the other mitochondrial compartments.  相似文献   

11.
Most mitochondrial proteins are synthesized in the cytosol and imported into one of the four mitochondrial compartments: outer membrane, intermembrane space, inner membrane, and matrix. Each compartment contains protein complexes that interact with precursor proteins and promote their transport. These translocase complexes do not act as independent units but cooperate with each other and further membrane complexes in a dynamic manner. We propose that a regulated coupling of translocases is important for the coordination of preprotein translocation and efficient sorting to intramitochondrial compartments.  相似文献   

12.
Fu H  Li W  Liu Y  Lao Y  Liu W  Chen C  Yu H  Lee NT  Chang DC  Li P  Pang Y  Tsim KW  Li M  Han Y 《Journal of proteome research》2007,6(7):2435-2446
Increasing evidence supports that the mitochondrial dysfunction, mainly caused by abnormal changes in mitochondrial proteins, plays a pivotal role in glutamate-induced excitotoxicity, which is closely associated with the pathogenesis of acute and chronic neurodegenerative disorders, such as stroke and Alzheimer's disease. In this study, post-treatment of cerebellar granule neurons with bis(7)-tacrine significantly reversed declines in mitochondrial membrane potential, ATP production, and neuronal cell death induced by glutamate. Moreover, this reversal was independent of NMDA antagonism, acetylcholinesterase inhibition, and cholinergic pathways. Using two-dimensional differential in-gel electrophoresis, we conducted a comparative analysis of mitochondrial protein patterns. In all, 29 proteins exhibiting significant differences in their abundances were identified in the glutamate-treated group when compared with the control. The expression patterns in 22 out of these proteins could be reversed by post-treatment with bis(7)-tacrine. Most of the differentially expressed proteins are involved in energy metabolism, oxidative stress, and apoptosis. In particular, the altered patterns of four of these proteins were further validated by Western blot analysis. Our findings suggest that multiple signaling pathways initiated by the altered mitochondrial proteins may mediate glutamate-induced excitotoxicity and also offer potentially useful intracellular targets for the neuroprotection provided by bis(7)-tacrine.  相似文献   

13.
Herrmann JM  Neupert W 《IUBMB life》2003,55(4-5):219-225
The inner membrane of mitochondria harbours a large number of polypeptides, many of which have evolved from proteins of the prokaryotic progenitors of mitochondria. The sorting routes on which these proteins are integrated into the mitochondrial inner membrane reflect their phylogenetic origin: Proteins of eukaryotic descent typically reach their destination following arrest of import at the level of the inner membrane. In contrast, many proteins inherited from the prokaryotic progenitor cell are inserted into the inner membrane in an export step following translocation into the matrix. Recently, three different insertion pathways from the matrix into the inner membrane were identified which show considerable parallels to the protein insertion processes in bacteria and chloroplasts. Two of these pathways depend on the related inner membrane proteins Oxa1 and Cox18. A third route is less well defined and depends on the membrane-associated matrix protein Mba1.  相似文献   

14.
The mitochondrial outer membrane mediates numerous interactions between the metabolic and genetic systems of mitochondria and the rest of the eukaryotic cell. We performed a proteomic study to discover novel functions of components of the mitochondrial outer membrane. Proteins of highly pure outer membrane vesicles (OMV) from Neurospora crassa were identified by a combination of LC-MS/MS of tryptic peptide digests and gel electrophoresis of solubilized OMV proteins, followed by their identification using MALDI-MS PMF. Among the 30 proteins found in at least three of four separate analyses were 23 proteins with known functions in the outer membrane. These included components of the import machinery (the TOM and TOB complexes), a pore-forming component (porin), and proteins that control fusion and fission of the organelle. In addition, proteins playing a role in various biosynthetic pathways, whose intracellular location had not been established previously, could be localized to the mitochondrial outer membrane. Thus, the proteome of the outer membrane can help in identifying new mitochondria-related functions.  相似文献   

15.
Mitochondrial outer and inner membranes contain translocators that achieve protein translocation across and/or insertion into the membranes. Recent evidence has shown that mitochondrial beta-barrel protein assembly in the outer membrane requires specific translocator proteins in addition to the components of the general translocator complex in the outer membrane, the TOM40 complex. Here we report two novel mitochondrial outer membrane proteins in yeast, Tom13 and Tom38/Sam35, that mediate assembly of mitochondrial beta-barrel proteins, Tom40, and/or porin in the outer membrane. Depletion of Tom13 or Tom38/Sam35 affects assembly pathways of the beta-barrel proteins differently, suggesting that they mediate different steps of the complex assembly processes of beta-barrel proteins in the outer membrane.  相似文献   

16.
Recent research on the mechanism underlying the interaction of bacterial pathogens with their host has shifted the focus to secreted microbial proteins affecting the physiology and innate immune response of the target cell. These proteins either traverse the plasma membrane via specific entry pathways involving host cell receptors or are directly injected via bacterial secretion systems into the host cell, where they frequently target mitochondria. The import routes of bacterial proteins are mostly unknown, whereas the effect of mitochondrial targeting by these proteins has been investigated in detail. For a number of them, classical leader sequences recognized by the mitochondrial protein import machinery have been identified. Bacterial outer membrane beta-barrel proteins can also be recognized and imported by mitochondrial transporters. Besides an obvious importance in pathogenicity, understanding import of bacterial proteins into mitochondria has a highly relevant evolutionary aspect, considering the endosymbiotic, proteobacterial origin of mitochondria. The review covers the current knowledge on the mitochondrial targeting and import of bacterial pathogenicity factors.  相似文献   

17.
Proteomic studies have demonstrated that yeast mitochondria contain roughly 1000 different proteins. Only eight of these proteins are encoded by the mitochondrial genome and are synthesized on mitochondrial ribosomes. The remaining 99% of mitochondrial precursors are encoded within the nuclear genome and after their synthesis on cytosolic ribosomes must be imported into the organelle. Targeting of these proteins to mitochondria and their import into one of the four mitochondrial subcompartments--outer membrane, intermembrane space (IMS), inner membrane and matrix--requires various membrane-embedded protein translocases, as well as numerous chaperones and cochaperones in the aqueous compartments. During the last years, several novel protein components involved in the import and assembly of mitochondrial proteins have been identified. The picture that emerges from these exciting new findings is that of highly dynamic import machineries, rather than of regulated, but static protein complexes. In this review, we will give an overview on the recent progress in our understanding of mitochondrial protein import. We will focus on the presequence translocase of the inner mitochondrial membrane, the TIM23 complex and the presequence translocase-associated motor, the PAM complex. These two molecular machineries mediate the multistep import of preproteins with cleavable N-terminal signal sequences into the matrix or inner membrane of mitochondria.  相似文献   

18.
Mitochondria import nuclear-encoded precursor proteins to four different subcompartments. Specific import machineries have been identified that direct the precursor proteins to the mitochondrial outer membrane, inner membrane or matrix, respectively. However, a machinery dedicated to the import of mitochondrial intermembrane space (IMS) proteins has not been found so far. We have identified the essential IMS protein Mia40 (encoded by the Saccharomyces cerevisiae open reading frame YKL195w). Mitochondria with a mutant form of Mia40 are selectively inhibited in the import of several small IMS proteins, including the essential proteins Tim9 and Tim10. The import of proteins to the other mitochondrial subcompartments does not depend on functional Mia40. The binding of small Tim proteins to Mia40 is crucial for their transport across the outer membrane and represents an initial step in their assembly into IMS complexes. We conclude that Mia40 is a central component of the protein import and assembly machinery of the mitochondrial IMS.  相似文献   

19.
Tail-anchored (TA) proteins are a biologically significant class of membrane proteins, which require specialised cellular pathways to insert their single C-terminal transmembrane domain into the correct membrane. Cryo-electron microscopy has recently provided new insights into the organelle-specific machineries for TA protein biogenesis. Structures of targeting and insertase complexes within the canonical guided entry of TA proteins (GET) pathway indicate how substrates are faithfully chaperoned into the endoplasmic reticulum (ER) membrane in metazoans. The core of the GET insertase is conserved within structures of the ER membrane protein complex (EMC), which acts in parallel to insert a different subset of TA proteins. Furthermore, structures of the dislocases Spf1 and Msp1 show how they remove mislocalised TA proteins from the ER and outer mitochondrial membranes respectively.  相似文献   

20.
In the last years the picture of protein import into the mitochondria has become much more complicated in terms of new components and new sorting pathways. These novel findings have also changed views concerning the biogenesis pathway of mitochondrial outer membrane proteins. In addition to proteins anchored with transmembrane alpha-helices, the endosymbiotic origin of the mitochondria has resulted in the presence of transmembrane beta-barrels in this compartment. The sorting and assembly pathway of outer membrane proteins involves three machineries: the translocase of the outer membrane (TOM complex) the sorting and assembly machinery (SAM complex) and the MDM complex (mitochondrial distribution and morphology). Here we review recent developments on the biogenesis pathways of outer membrane proteins with a focus on Tom proteins, the most intensively studied class of these precursor proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号