首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although the cellular functions of TSC2 and its protein product, tuberin, are not known, somatic mutations in the TSC2 tumor suppressor gene are associated with tumor development in lymphangioleiomyomatosis (LAM). We found that ribosomal protein S6 (S6), which exerts translational control of protein synthesis and is required for cell growth, is hyperphosphorylated in the smooth muscle-like cell lesions of LAM patients compared with smooth muscle cells from normal human blood vessels and trachea. Smooth muscle (SM) cells derived from these lesions (LAMD-SM) also exhibited S6 hyperphosphorylation, constitutive activation of p70 S6 kinase (p70S6K), and increased basal DNA synthesis. In parallel, TSC2-/- smooth muscle cells (ELT3) and TSC2-/- epithelial cells (ERC15) also exhibited hyperphosphorylation of S6, constitutive activation of p70S6K, and increased basal DNA synthesis. Re-introduction of wild type tuberin into LAMD-SM, ELT3, and ERC15 cells abolished phosphorylation of S6 and significantly inhibited p70S6K activity and DNA synthesis. Rapamycin, an immunosuppressant, inhibited hyperphosphorylation of S6, p70S6K activation, and DNA synthesis in LAMD-SM cells. Interestingly, the basal levels of phosphatidylinositol 3-kinase, Akt/protein kinase B, and p42/p44 MAPK activation were unchanged in LAMD-SM and ELT3 cells relative to levels in normal human tracheal and vascular SM. These data demonstrate that tuberin negatively regulates the activity of S6 and p70S6K specifically, and suggest a potential mechanism for abnormal cell growth in LAM.  相似文献   

2.
3.
Protein S‐palmitoylation is a reversible post‐translational modification that alters the localization, stability, and function of hundreds of proteins in the cell. S‐palmitoylation is essential for the function of both oncogenes (e.g., NRAS and EGFR) and tumor suppressors (e.g., SCRIB, melanocortin 1 receptor). In mammalian cells, the thioesterification of palmitate to internal cysteine residues is catalyzed by 23 Asp‐His‐His‐Cys (DHHC)‐family palmitoyl S‐acyltransferases while the removal of palmitate is catalyzed by serine hydrolases, including acyl‐protein thioesterases (APTs). These enzymes modulate the function of important oncogenes and tumor suppressors and often display altered expression patterns in cancer. Targeting S‐palmitoylation or the enzymes responsible for palmitoylation dynamics may therefore represent a candidate therapeutic strategy for certain cancers.  相似文献   

4.
5.
Recent evidence from our laboratory demonstrates that platelets synthesize numerous proteins in a signal-dependent fashion (Pabla, R., Weyrich, A. S., Dixon, D. A., Bray, P. F., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (1999) J. Cell Biol. 144, 175-184; Weyrich, A. S., Dixon, D. A., Pabla, R., Elstad, M. R., McIntyre, T. M., Prescott, S. M., and Zimmerman, G. A. (1998) Proc. Natl. Acad. Sci. U. S. A. 95, 5556-5561). Protein synthesis in platelets is controlled at the translational level; however, the mechanisms of regulation are not known. Here we demonstrate that translation initiation factors are redistributed to mRNA-rich areas in aggregated platelets, an event that induces protein synthesis. Interrogation of cDNA arrays revealed that platelet-derived mRNAs are primarily associated with the cytoskeletal core. In contrast, eukaryotic initiation factor 4E (eIF4E), the essential mRNA cap-binding protein that controls global translation rates, is localized in the membrane skeleton and soluble fraction of platelets, physically separated from most mRNAs. Platelet activation redistributes eIF4E to the cytoskeleton and increases interactions of eIF4E with mRNA cap structures. Redistribution of eIF4E to the mRNA-rich cytoskeleton coincides with a marked increase in protein synthesis, a process that is blocked when intracellular actin is disrupted. Additional studies demonstrated that beta(3) integrins are the primary membrane receptor that distributes eIF4E within the cell. These results imply that integrins link receptor-mediated pathways with mRNA-rich cytoskeletal domains and thereby modulate the organization of intracellular translational complexes. They also indicate that the functional status of eIF4E is regulated by its intracellular distribution.  相似文献   

6.
We have previously characterized a cellular thyroid hormone-binding protein (p55) that is found concentrated on the lumenal face of the endoplasmic reticulum and nuclear envelope (Cheng, S.-y., Hasumura, S., Willingham, M.C., and Pastan, I. (1986) Proc. Natl. Acad. Sci. U.S.A. 83, 947-951). To understand the role p55 plays in thyroid hormone action, we examined the regulation of p55 by 3,3',5-triiodo-L-thyronine (T3). Rat pituitary tumor GH3 cells cultured in regular medium, thyroid hormone-depleted medium (Td medium), or Td medium supplemented with 50 nM T3 (Td + T3 medium) were metabolically labeled with [35S]methionine and immunoprecipitated with antibodies against p55. Treatment with T3 caused a fall in p55 levels. Poly(A+) RNA from cells cultured in regular, Td, or Td + T3 medium was hybridized to a cDNA from p55. T3 withdrawal or addition had no effect on p55 mRNA levels. Furthermore, the initial rates of synthesis of p55 from cells cultured in regular, Td, and Td + T3 were found to be similar. However, analysis of the decay curves from cells in which p55 was pulse-labeled with [35S]methionine indicated that p55 is 2-fold less stable in T3 containing medium. These results indicated that down-regulation of p55 by T3 occurs at the post-translational level. Since DNA sequence analysis indicates that p55 is identical to protein disulfide isomerase and the beta-subunit of prolyl-4-hydroxylase, T3 may mediate its effects on the synthesis, secretion, and/or transport of proteins via p55.  相似文献   

7.
Phorbol esters such as phorbol myristate acetate (PMA) were employed to examine the involvement of protein kinase C in the regulation of protein synthesis in intact GH3 pituitary tumor cells. Amino acid incorporation increased as a function of time of pretreatment with these agents; 4-8- and 2-3-fold stimulations were observed for Ca2+-depleted and -restored preparations, respectively, following 2 h of exposure. PMA enhanced incorporation of amino acid into all detectable polypeptide species. Lysates of PMA-treated cells incorporated amino acid more efficiently than did lysates of untreated controls. Cells slowed at initiation by Ca2+ depletion responded to treatment with PMA with the production of low molecular weight polysomes and a concomitant decrease in 80 S monomers. In Ca2+-restored preparations, which form large polysomes, PMA treatment resulted in a decrease in 80 S monomers and a shift in average polysomal size from smaller to larger molecular weight. Ribosomal transit times, however, were not altered. PMA-stimulated amino acid incorporation and polysome formation were either eliminated or reduced significantly by actinomycin D and could not be ascribed to increased amino acid uptake or methionylation of tRNA. Substances which elevate cAMP in GH3 cells mimicked phorbol ester in its actions on protein synthesis. It is proposed that GH3 cells, in response to various stimuli, rapidly synthesize an mRNA that subsequently increases the synthesis of a rate-limiting component of translational initiation. Evidence that this pathway for translational control may function in alternative cell types is also presented.  相似文献   

8.
9.
10.
Humans have evolved elaborate mechanisms to activate p53 in response to insults that lead to cancer, including the binding and inhibition of Hdm2 by the 60S ribosomal proteins (RPs) RPL5 and RPL11. This same mechanism appears to be activated upon impaired ribosome biogenesis, a risk factor for cancer initiation. As loss of RPL5/RPL11 abrogates ribosome biogenesis and protein synthesis to the same extent as loss of other essential 60S RPs, we reasoned the loss of RPL5 and RPL11 would induce a p53-independent cell cycle checkpoint. Unexpectedly, we found that their depletion in primary human lung fibroblasts failed to induce cell cycle arrest but strongly suppressed cell cycle progression. We show that the effects on cell cycle progression stemmed from reduced ribosome content and translational capacity, which suppressed the accumulation of cyclins at the translational level. Thus, unlike other tumor suppressors, RPL5/RPL11 play an essential role in normal cell proliferation, a function cells have evolved to rely on in lieu of a cell cycle checkpoint.  相似文献   

11.
Ca2+ has been recently reported to be required for high rates of translational initiation in GH3 pituitary cells (Chin, K.-V., Cade, C., Brostrom, C.O., Galuska, E.M., and Brostrom, M.A. (1987) J. Biol. Chem. 262, 16509-16514). In the present investigation low concentrations of the Ca2+ ionophores, A23187 and ionomycin, were found to rapidly suppress the Ca2+-dependent component of protein synthesis in GH3 cells. More ionophore was required to inhibit amino acid incorporation into protein as extracellular Ca2+ was increased. Pre-existing inhibitions of protein synthesis produced by low concentrations of ionophore at low extracellular Ca2+ concentrations were reversed by adjustment to high extracellular Ca2+. Treatment with ionophore reduced the cellular contents of polysomes and 43 S preinitiation complex to values equivalent to those found for Ca2+-depleted cells. Average ribosomal transit times were unaffected by ionophore, and treated cells retained the ability to accumulate polysomes when incubated with cycloheximide. Cell types, such as HeLa and Chinese hamster ovary, that normally display only a modest Ca2+-dependent component of protein synthesis, manifested a strong underlying Ca2+ dependence in amino acid incorporation and polysome formation following treatment with low concentrations of ionophore. Protein synthesis in GH3 or HeLa cells during recovery from heat shock and arsenite treatment was not affected by cellular Ca2+ depletion or ionophore treatment. On the basis of these results, Ca2+ ionophore is proposed to inhibit Ca2+-dependent translational initiation through facilitating the mobilization of sequestered intracellular Ca2+.  相似文献   

12.
Expression of antisense RNA against eukaryotic translation initiation factor 4E (eIF-4E) in HeLa cells causes a reduction in the levels of both eIF-4E and eIF-4 gamma (p220) and a concomitant decrease in the rates of both cell growth and protein synthesis (De Benedetti, A., Joshi-Barve, S., Rinker-Schaffer, C., and Rhoads, R. E. (1991) Mol. Cell Biol. 11, 5435-5445). The synthesis of most proteins in the antisense RNA-expressing cells (AS cells) is decreased, but certain proteins continue to be synthesized. In the present study, we identified many of these as stress-inducible or heat shock proteins (HSPs). By mobilities on sodium dodecyl sulfate-polyacrylamide gel electrophoresis and by reactivity with monoclonal antibodies generated against human HSPs, four of these were shown to be HSP 90, HSP 70, HSP 65, and HSP 27. The steady-state levels of HSP 90, 70, and 27 were elevated in relation to total protein in AS cells. Pulse labeling and immunoprecipitation indicated that HSP 90 and HSP 70 were synthesized more rapidly in AS cells than in control cells. The accelerated synthesis of HSPs in the AS cells was not due, however, to increased mRNA levels; the levels of HSP 90 and 70 mRNAs either remained the same or decreased after induction of antisense RNA expression. Actin mRNA, a typical cellular mRNA, was found on high polysomes in control cells but shifted to smaller polysomes in AS cells, as expected from the general decrease in translational initiation caused by eIF-4E and eIF-4 gamma depletion. HSP 90 and 70 mRNAs showed the opposite behavior; they were associated with small polysomes in control cells but shifted to higher polysomes in AS cells. These results demonstrate that HSP mRNAs have little or no requirement in vivo for the cap-recognition machinery and suggest that these mRNAs may utilize an alternative, cap-independent mechanism of translational initiation.  相似文献   

13.

MiR-23a-3p has been shown to promote liver cancer cell growth and metastasis and regulate that of chemosensitivity. Protocadherin17 (PCDH17) is a tumor suppressor gene and plays an essential part in cell cycle of hepatocellular carcinoma (HCC). This study aimed at evaluating the effects of miR-23a-3p and PCDH17 on HCC cell cycle and underlining the mechanism. The level of miR-23a-3p was up-regulated, while PCDH17 level was down-regulated in HCC tissues compared to adjacent tissues. For the in vitro studies, high expression of miR-23a-3p down-regulated PCDH17 level; increased cell viability; promoted G1/S cell cycle transition; up-regulated cyclin D1, cyclin E, CDK2, CDK4, p-p27, and p-RB levels; and down-regulated the expression of p27. Dual luciferase reporter assay suggested PCDH17 was a target gene of miR-23a-3p. MiR-23a-3p inhibitor and PCDH17 siRNA led to an increase in cell viability and the number of cells in the S phase and up-regulated cyclin D1 and cyclin E levels, compared with miR-23a-3p inhibitor and NC siRNA group. For the in vivo experiments, high expression of miR-23a-3p promoted tumor growth and reduced PCDH17 level in the cytoplasm. These results indicated that high expression of miR-23a-3p might promote G1/S cell cycle transition by targeting PCDH17 in HCC cells. The miR-23a-3p could be considered as a molecular target for HCC detection.

  相似文献   

14.
C K Tang  D E Draper 《Biochemistry》1990,29(18):4434-4439
Escherichia coli ribosomal protein S4 is a translational repressor regulating the expression of four ribosomal genes in the alpha operon. In vitro studies have shown that the protein specifically recognizes an unusual mRNA pseudoknot secondary structure which links sequences upstream and downstream of the ribosome binding site for rpsM (S13) [Tang, C. K., & Draper, D. E. (1989) Cell 57, 531]. We have prepared fusions of the rpsM translational initiation site and lacZ that allows us to detect repression in cells in which overproduction of S4 repressor can be induced. Twenty-five mRNA sequence variants have been introduced into the S13-lacZ fusions and the levels of translational repression measured. Sets of compensating base changes confirm the importance of the pseudoknot secondary structure for translational repression. An A residue in a looped, single-stranded sequence is also required for S4 recognition and may contact S4 directly. Comparison of translational repression levels and S4 binding constants for the set of mRNA mutations show that nine mutants are repressed much more weakly than predicted from their affinity for S4; in extreme cases no repression can be detected for variants with unchanged S4 binding. We suggest that the mRNA contains functionally distinct ribosome and repressor binding sites that are allosterically coupled. Mutations can relieve translational repression by disrupting the linkage between the two sites without altering S4 binding. This proposal assigns to the mRNA a more active role in mediating translational repression than found in other translational repression systems.  相似文献   

15.
M Kostura  N Craig 《Biochemistry》1986,25(21):6384-6391
Inhibitors of RNA synthesis such as actinomycin D, MPB, and cordycepin progressively inhibit the initiation of protein synthesis in intact, nucleated mammalian cells. This inhibition is not dependent on the levels of mRNA, ribosomes, or tRNA. Lysates prepared from CHO cells treated with actinomycin D do not incorporate labeled globin mRNA or ovalbumin mRNA into 80S initiation complexes at the rates of untreated control extract. The ability of the extracts to produce and accumulate 48S preinitiation complexes was assessed using the 60S subunit joining inhibitors edeine and 5'-guanylyl imidodiphosphate. Control extracts were able to accumulate both the 48S preinitiation complexes and the migration-related intermediates in the presence of both inhibitors. However, lysates derived from CHO cells treated with actinomycin D were unable to produce these complexes. This was also true at low temperature, a condition that does not inhibit mRNA binding but prevents migration of the 43S complex along the mRNA. Mixing experiments with extracts from untreated control or AMD-treated CHO cells provided no evidence for a translational inhibitor. Thus, our data are consistent with the hypothesis that treatment of whole cells with actinomycin D inhibits protein synthesis initiation at the level of mRNA binding and not at migration or 60S subunit joining.  相似文献   

16.
17.
The synthesis of rRNA was unbalanced by the introduction of plasmids containing rRNA operons with large internal deletions. Significant unbalanced synthesis was achieved only when the deletions affected both 16S and 23S RNA genes or when the deletions affected the 23S RNA gene alone. Although large imbalances in rRNA synthesis resulted from deletions affecting 16S and 23S RNA genes or only 23S RNA genes, excess 16S RNA and defective rRNA species were rapidly degraded. Large imbalances in the synthesis of regions of rRNA did not result in significantly unbalanced synthesis of ribosomal proteins. It therefore is probable that excess intact 16S RNA is degraded because ribosomal proteins are not available for packaging the RNA into ribosomes. Defective RNA species also may be degraded for this reason or because proper ribosome assembly is prevented by the defects in RNA structure. We propose two possible explanations for the finding that unbalanced overproduction of binding sites for feedback ribosomal protein does not result in significant unbalanced translational feedback depression of ribosomal protein mRNAs.  相似文献   

18.
19.
The discovery of G-rich oligonucleotides (GROs) that have non-antisense antiproliferative activity against a number of cancer cell lines has been recently described. This biological activity of GROs was found to be associated with their ability to form stable G-quartet-containing structures and their binding to a specific cellular protein, most likely nucleolin (Bates, P. J., Kahlon, J. B., Thomas, S. D., Trent, J. O., and Miller, D. M. (1999) J. Biol. Chem. 274, 26369-26377). In this report, we further investigate the novel mechanism of GRO activity by examining their effects on cell cycle progression and on nucleic acid and protein biosynthesis. Cell cycle analysis of several tumor cell lines showed that cells accumulate in S phase in response to treatment with an active GRO. Analysis of 5-bromodeoxyuridine incorporation by these cells indicated the absence of de novo DNA synthesis, suggesting an arrest of the cell cycle predominantly in S phase. At the same time point, RNA and protein synthesis were found to be ongoing, indicating that arrest of DNA replication is a primary event in GRO-mediated inhibition of proliferation. This specific blockade of DNA replication eventually resulted in altered cell morphology and induction of apoptosis. To characterize further GRO-mediated inhibition of DNA replication, we used an in vitro assay based on replication of SV40 DNA. GROs were found to be capable of inhibiting DNA replication in the in vitro assay, and this activity was correlated to their antiproliferative effects. Furthermore, the effect of GROs on DNA replication in this assay was related to their inhibition of SV40 large T antigen helicase activity. The data presented suggest that the antiproliferative activity of GROs is a direct result of their inhibition of DNA replication, which may result from modulation of a replicative helicase activity.  相似文献   

20.
In this work we report the synthesis of a radioactive, photolabile oligodeoxyribonucleotide probe and its exploitation in identifying 50S ribosomal subunit components neighboring its target site in 23S rRNA. The probe is complementary to 23S rRNA nucleotides 2497-2505, a single-stranded sequence that has been shown to fall within the peptidyltransferase center of Escherichia coli ribosomes [Cooperman, B. S., Weitzmann, C. J., & Fernandez, C. L. (1990) in The Ribosome: Structure, Function, & Evolution (Hill, W. E., Dahlberg, A., Garrett, R. A., Moore, P. B., Schlesinger, D., & Warner, J. R., Eds.) pp 491-501, American Society of Microbiology, Washington]. On photolysis in the presence of 50S ribosomes, it site-specifically incorporates into protein L3 (identified by both SDS-PAGE and immunological methods) and into three separate 23S rRNA regions: specifically, nucleotides 2454; 2501, 2502, 2505, 2506; and 2583, 2584. These results provide clear evidence that G-2505 in 23S rRNA is within 24 A (the distance between G-2505 and the photogenerated nitrene) of protein L3 and of each of the nucleotides mentioned above and are of obvious importance in the construction of detailed three-dimensional models of ribosomal structure. The approach we present is general and can be applied to determining ribosomal components neighboring regions of rRNA that are susceptible to binding by complementary oligodeoxyribonucleotides, both in intact 30S and 50S subunits and in subunits at various stages of reconstitution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号