首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The traditional order Mischococcales (Xanthophyceae) is polyphyletic with some original members now classified in a separate class, Eustigmatophyceae. However, most mischococcalean species have not yet been studied in detail, raising the possibility that many of them still remain misplaced. We established an algal culture (strain CCALA 838) determined as one such species, Trachydiscus minutus (Bourr.) H. Ettl, and studied the morphology, ultrastructure, life cycle, pigment composition, and phylogeny using the 18S rRNA gene. We discovered a zoosporic part of the life cycle of this alga. Zoospore production was induced by darkness, suppressed by light, and was temperature dependent. The zoospores possessed one flagellum covered with mastigonemes and exhibited a basal swelling, but a stigma was missing. Ultrastructural investigations of vegetative cells revealed plastids lacking both a connection to the nuclear envelope and a girdle lamella. Moreover, we described biogenesis of oil bodies on the ultrastructural level. Photosynthetic pigments of T. minutus included as the major carotenoids violaxanthin and vaucheriaxanthin (ester); we detected no chl c. An 18S rRNA gene‐based phylogenetic analysis placed T. minutus in a clade with species of the genus Pseudostaurastrum and with Goniochloris sculpta Geitler, which form a sister branch to initially studied Eustigmatophyceae. In summary, our results are inconsistent with classifying T. minutus as a xanthophycean and indicate that it is a member of a novel deep lineage of the class Eustigmatophyceae.  相似文献   

2.
Variations in the HPLC‐derived pigment composition of cultured Pavlovophyceae (Cavalier‐Smith) Green et Medlin were compared with phylogenetic relationships inferred from 18S rDNA sequencing, morphological characteristics, and current taxonomy. The four genera described for this haptophyte class (Diacronema Prauser emend. Green et Hibberd, Exanthemachrysis Lepailleur, Pavlova Butcher, and Rebecca Green) were represented by nine different species (one of which with data from GeneBank only). Chlorophylls a, c1, c2 and MgDVP (Mg‐[3,8‐divinyl]‐phytoporphyrin‐132‐methylcarboxylate) and the carotenoids fucoxanthin, diadinoxanthin, diatoxanthin, and β,β‐carotene were detected in all cultures. Species only differed in the content of an unknown (diadinoxanthin‐like) xanthophyll and two polar chl c forms, identified as a monovinyl (chl c1‐like) and a divinyl (chl c2‐like) compound. This is the first observation of the monovinyl form in haptophytes. Based on distribution of these two chl c forms, species were separated into Pavlovophyceae pigment types A, B, and C. These pigment types crossed taxonomic boundaries at the generic level but were in complete accordance with species groupings based on molecular phylogenetic relationships and certain ultrastructural characteristics (position and nature of pyrenoid, stigma, and flagella). These results suggest that characterization of the pigment signature of unidentified culture strains of Pavlovophyceae can be used to predict their phylogenetic affinities and vice versa. Additional studies have been initiated to evaluate this possibility for the haptophyte class Prymnesiophyceae.  相似文献   

3.
Chlorcorona bohemica (Fott) Fott was previously of uncertain taxonomic affinities. The cell to cell connections, which are one of the chief features of the colony, are composed of wall extensions from adjacent cells. The outgrowths are connected by a fine fibrous component extending from wall to wall. The structure of the wall itself and the cell to cell connections, are similar to those of Pyrobotrys, although the connections in the latter are not as elongated. In addition, the flagellar apparatus of Chlorocorona is very similar to the flagellar apparatus of Pyrobotrys, and unlike that in other Chlorophyceae examined. These features suggest that Chlorcorona is closely related to Pyrobotrys and should be referred to the family Spondylomoraceae.  相似文献   

4.
Ultrastructural and molecular sequence data were used to assess the phylogenetic position of the coccoid green alga deposited in the culture collection of the University of Texas at Austin under the name of Neochloris sp. (1445). This alga has uninucleate vegetative cells and a parietal chloroplast with pyrenoids; it reproduces by forming naked biflagellate zoospores. Electron microscopy revealed that zoospores have basal bodies displaced in the counterclockwise absolute orientation and overlapped at their proximal ends. Four microtubular rootlets numbering 2 and 2/1 are alternatively arranged in a cruciate pattern. A system I fiber extends beneath each d rootlet and a system II fiber (rhizoplast) originates from each basal body and extends peripherally along each d rootlet. These features differ substantially from those of the three genera, Ettlia (Komárek) Deason et al., Neochloris (Starr) Deason et al., and Parietochloris Watanabe et Floyd, all of which were previously accommodated in the single genus Neochloris Starr. Sequence data from the nuclear small subunit ribosomal RNA gene were obtained and compared with published green algal sequences. Results from the ultrastructural and sequence data support the placement of Neochloris sp. (The Culture Collection of Algae at the University of Texas at Austin [UTEX] no. 1445) in the Ulvophyceae. This isolate is described as Pseudoneochloris marina , gen. et sp. nov. in the Ulotrichales, Ulvophyceae.  相似文献   

5.
The quadriflagellate snow alga Chlainomonas Christen, distributed in New Zealand and North America, has several unusual structural attributes. A process assumed to be cytokinesis involves extrusion of protoplasm from the parent through a narrow canal, C. kolii (J. T. Hardy et Curl) Hoham produces a net‐like outer envelope rather than a cell wall, and the flagellar basal apparatus of Chlainomonas consists of two semi‐independent pairs of basal bodies. Structural connections between basal body pairs appear minimal, but a connecting system different from that observed in other genera exists within each pair. Phylogenetic analysis using rbcL sequences places Chlainomonas in the Chloromonas clade, other known members of which are all biflagellate. Chlainomonas is split into two robust lineages, with New Zealand collections sharing an origin with northern North American collections. Although the quadriflagellate condition is regarded as ancestral in the Chlorophyceae, we speculate—based on ultrastructural and molecular data presented here—that Chlainomonas represents a derived form that has arisen from fusion of two ancestral biflagellate cells. Other explanations (for example, that Chlainomonas represents a diploid form of a biflagellate species) are remotely possible but are presently at odds with extensive observations of field material. Improvements in techniques for experimental manipulation of these sensitive cryophiles will be required to fully characterize their structure and progress our understanding of their biology.  相似文献   

6.
The ultrastructure of the flagellar apparatus in pre-inversion and inversion stages of Platydorina resembles that of Chlamydomonas in having 180° rotational symmetry and clockwise absolute orientation. Basal bodies are in a “V” configuration and connected by one distal and two proximal fibers. Alternating two- and four-membered microtubular rootlets are cruciately arranged. During maturation, the basal bodies rotate and separate, and 180° rotational symmetry is lost. Simultaneously, each proximal fiber detaches from one of the functional basal bodies, and the distal fiber detaches from both. The mature apparatus has widely separated and nearly parallel basal bodies. Flagellar orientation in Platydorina is completed just after inversion and a flattening of the colony called intercalation, resulting in the pairs of flagella of neighboring cells extending from the colony in opposite directions in an alternating fashion. Flagellar orientation and separated basal bodies minimize the interference between the flagella of neighboring cells. Basal bodies and rootlets of the two intercalated halves of a colony rotate, resulting in the effective strokes of the flagella of every cell being towards the colonial posterior. The flagella of each cell beat with an effective stroke in the direction of the two inner rootlets. The flagella have an asymmetrical ciliary type beat. The rotated, separated, and parallel basal bodies, together with the nearly parallel rootlets probably are adaptations for movement of this colonial volvocalean alga. The flagellar apparatus in immature stages of Platydorina lends support to the suggestion that the alga has evolved from a Chlamydomonas-like ancestor.  相似文献   

7.
The complete 18S rRNA gene sequences of three Oocystis A. Braun species (Oocystaceae) and three other chlorococcal algae, Tetrachlorella alternans (G. M. Smith) Korš. (Scenedesmaceae), Makinoella tosaensis Okada (Scenedesmaceae), and Amphikrikos cf. nanus (Fott & Heynig) Hind. (Chlorellaceae) were determined and subjected to four different phylogenetic analysis algorithms. Independent of the reconstruction method, these taxa clustered together as a monophyletic group (Oocystaceae) within the Trebouxiophyceae. This result was supported by high bootstrap values. A comparison of morphological data with the phylogenetic reconstructions indicated that the evolution of Oocystaceae was accompanied by a reduction in the number of plastids. This study fully supports the taxonomic assignment of the Oocystaceae as a distinct family. The diacritic criterion that the cell walls are composed of several cellulose layers with perpendicular fibril orientations is in accordance with the molecular data.  相似文献   

8.
Vegetative cells of Gonium pectorale have a fine structure similar to that of Chlamydomonas. In addition, three zones comprise an extracellular matrix; a fibrillar sheath and tripartite boundary surround individual cells, and a fragile capsule zone surrounds the entire colony. Cytokinesis is accomplished by a phycoplast and cleavage furrow. The flagellar apparatus of the immature vegetative cell of this colonial alga is similar to that of Chlamydomonas, but the basal bodies are slightly separated at their proximal ends. The four microtubular rootlets alternate between two and four members. During development, the basal bodies become further separated and nearly parallel. The distal fiber is stretched, but it remains attached to both basal bodies. At maturity, the basal bodies of peripheral cells of the colony have rotated in opposite directions on their longitudinal axes resulting in a displacement of the distal fiber to one side, an asymmetrical orientation of the rootlets and loss of 180° rotational symmetry. Central cells remain similar to Chlamydomonas in that basal bodies do not rotate, rootlets are cruciate, the distal fiber remains medially inserted and 180° rotational symmetry is conserved. A “pin-wheel” configuration of flagellar pairs and the orientation of parallel rootlets toward the colony perimeter probably accounts for the rotation of the colonies during forward swimming. In addition, these ultrastructural features support the traditional placement of G. pectorale as an intermediate between the unicellular Chlamydomonas and the more complex colonial volvocalean genera.  相似文献   

9.
Small-subunit ribosomal RNA nucleotide sequences were inferred for Giraudyopsis stellifera Dangeard (Chrysomeridales), as well as for Pulvinaria sp. and Sarcinochrysis marina Geitler (Sarcinochrysidales,). Phylogenetic analyses of the molecular data indicate that the former is weakly related to the Phaeophyceae/Xanthophyceae clade, whereas the latter two have affinities to the Pelagophyceae, and the Sarcinochrysidales sensu stricto is transferred to this class. A recent study proposed that the Pelagophyceae belongs to a larger assemblage of chromophytic species characterized by reduced flagellar apparatuses. Although the flagellar apparatus characterizing the Sarcinochrysidales is reduced relative to the Chysomeridaels and some other chromophytes, it is the most complicated to be associated with “the reduced flagellar apparatus” lineage. Cladistic analyses of a traditional data set (largely ultrastructural features of the flagellar apparatus) and a combined traditional/molecular data set were used to assess the evolutionary trends of reduction in the flagellar apparatus within the heterokont chromophytes.  相似文献   

10.
伪指环虫、异钩虫和三钩虫的系统位置   总被引:4,自引:1,他引:3  
采用单个虫体PCR扩增、序列测定与分析的方法,对锚首虫科中后吸器形态较特殊的3个属:伪指环虫属、异钩虫属和三钩虫属的28S rRNA基因5'端序列进行了研究,并采用PAUP软件构建了分子系统树.结果显示,异钩虫属、三钩虫属和伪指环虫属明显地嵌合于其他锚首虫属之间,进而明确了这3个属的分类地位,应归属锚首虫科.锚首虫科和指环虫科之间的关系则有待今后进一步研究.  相似文献   

11.
Sequence data from the nuclear small-subunit ribosomal RNA gene was obtained for nine strains of Bracteacoccus Tereg, representing at least five morphological species and four distinct geographic locations. These, along with sequence data from two additional chlorophycean taxa, Spongiochloris spongiosa Starr and Ascochloris multinucleata Bold et MacEntee, and 48 published sequences from green algal taxa, were used to determine the phylogenetic placement of Bracteacoccus with respect to other chlorophycean green algae. Results support the monophyly of Bracteacoccus strains, contrasting with patterns observed so far for many other coccoid green algae. The range of variation among Bracteacoccus strains is similar to that of other congeners. Basal body orientation in Bracteacoccus has been interpreted as clockwise; however, the 18S data point to a relationship between Bracteacoccus and taxa with the directly opposed configuration of the flagellar apparatus. No close relationship was found to the multinucleated green coccoids with clockwise orientation of basal bodies, such as Spongiochloris, or to those with parallel basal bodies, such as Spermatozopsis. However, 18S data confirm that the motile and vegetative cells of Bracteacoccus are structurally distinct from the representatives of sphaeroplealean families currently studied. It is premature to reclassify Bracteacoccus until 18S comparisons can be made with additional sphaeroplealean taxa and with algae with similar flagellar structure such as Dictyochloris and Heterochlamydomonas.  相似文献   

12.
Pelagomonas calceolata gen. et sp. nov., an ultra-planktonic marine alga, is described using electron microscopy and the cytoplasmic small subunit (18S) ribosomal RNA (rRNA) gene sequence. Cells are uniflagellate, about 1.5 × 3 μm in size. The flagellium has two rows of bipartite hairs, the paraxonemal rod has a dentate appearance, and a two-gyred transitional helix is present between two transitional plates. Microtubular roots, striated roots, and a second basal body are absent. A thin organic theca surrounds most of the cell. There is a single chloroplast with a girdle lamella and a single, dense mitochondrion with tubular cristae. A single Golgi body with swelled cisternae lies beneath the flagellum, and each cell has an ejectile organelle that putatwely releases a cylindrical structure. A vacuole, or cluster of vacuoles, contains the putative carbohydrate storage product. The 18S rRNA gene was sequenced completely in both directions, excluding three primer regions. When compared to the same gene sequence from other organisms, Pelagomonas calceolata gen. et sp. nov. occupies an unresolved position among other chromophyte algae and is distinct from members of any of these classes. Based on morphological, ultrastructural, and molecular data, we describe this alga as a new species, and we place this highly unusual new species in a new genus, family, order, and class.  相似文献   

13.
The nuclear small-subunit ribosomal DNA sequence from the freshwater red alga Boldia erythrosiphon Herndon emend Howard et Parker was determined. Phylogenetic analysis confirms the positioning of this species within the bangiophycidean order of the Compsopogonales. The results strongly suggest that occupation of freshwater habitats by marine red algae has happened at least twice during red algal evolution.  相似文献   

14.
We sequenced the nuclear-encoded small-subunit ribosomal RNA gene (18S rDNA) of Chaetosphaeridium globosum (Nordst.) Klebahn, a microscopic freshwater epiphytic chlorophyte, to assess its phylogenetic affinities in the Chlorophyta. A phylogenetic analysis of a broad sampling of green algal taxa and Chaetosphaeridium confirmed that this alga is a member of the Charophyceae (Streptophyta) as earlier microscopical studies had suggested. However, more detailed phylogenetic analyses of the streptophyte lineage showed that contrary to expectations based on the ultrastructure of the zoospores, the presence of a unique type of setae, the oogamous mode of reproduction, and the occurrence of oscillatory rotations of the cytoplasm, Chaetosphaeridium and Coleochaete are not closely related and do not form a monophyletic clade. Instead, Chaetosphaeridium represents an early branch in the streptophyte lineage that had a near-simultaneous origin as the Charalean clade and a clade formed by all remaining streptophytes examined ( Klebsormidium, Coleochaete, Chlorokybus, Zygnematales, and bryophytes). All phylogenetic inference methods used (neighbor-joining analysis of Kimura distances, maximum likelihood, and maximum parsimony) resulted in essentially the same tree topology. No Group I introns were found in the 18S rDNA coding region of Chaetosphaeridium. Our molecular phylogenetic analysis of Chaetosphaeridium supports a recent cladistic classification of the Streptobionta by Kenrick and Crane in which Chaetosphaeridium is placed in a monotypic division and class, Chaetosphaeridiophyta and Chaetosphaeridiophyceae, respectively.  相似文献   

15.
The flagellar apparatuses of the quadriflagellate zoo-spores and biflagellate female gametes of the marine chaetophoracean alga Entocladia viridis Reinke are significantly different from those of algae belonging to Chaetophoraceae sensu stricto, but closely resemble those of ulvacean genera. These differences permit the taxonomic reassignment of certain marine chaetophoracean genera and an evaluation of the flagellar apparatus features used to characterize the class Ulvophyceae. Critical features of the zoospore include arrangement of the four basal bodies into an upper and a lower pair with the proximal ends of the upper basal bodies overlapping, terminal caps, proximal sheaths connected to one another by striated bands, and a cruciate microtubular rootlet system having a 3-2–3-2 alternation pattern and striated microtubule-associated components that accompany the two-membered rootlets. An indistinct distal fiber occurs just anterior to the basal bodies, and is closely associated with the insertion into the flagellar apparatus of the three-membered rootlets. The flagellar apparatus demonstrates 180° rotational symmetry, and its components show counterclockwise absolute orientation when viewed from above. Newly described features include the prominently bilobed structure of the terminal caps on the upper basal body pair, and the presence of both a granular zone and an additional single microtubule anterior to each of the four rootlets, an arrangement termed the “stacked rootlet configuration.” Rhizoplasts were not observed and are presumed to be absent. The gamete is identical, except for the absence of the lower basal body pair and the presence of an electron-dense membrane associated structure that resembles the mating structure found in Ulva gametes. These findings, correlated with life history data, sporangial and gametangial structure and developmental patterns, chloroplast pigment arrays, and vegetative cell ultrastructural features, compel the removal of Entocladia viridis and similar members of the marine Chaetophoraceae to a separate family, the Ulvellaceae. The latter is referred to the order Ulvales of the Ulvophyceae. The counterclockwise absolute orientation of components, and terminal caps, may be the most consistent flagellar apparatus features of ulvophycean green algae, while variations in other features previously considered diagnostic for the Ulvophyceae may serve instead to identify discrete lineages within this class.  相似文献   

16.
Nucleotide sequences of the small-subunit ribosomal RNA gene ( 18S rDNA ) were newly determined for four members of the related rhodophyte orders Palmariales and Acrochaetiales and were compared by neighbor-joining and parsimony analyses with four previously published sequences from these orders. A published rDNA sequence from Nemalion helminthoides ( Velley in Withering ) Batters ( Nemaliales ) and a gene sequence determined herein for Nothocladus nodosus Skuja ( Batrachospermales ) were used as outgroups. Sequences were very similar within the Palmariales with a maximum difference of 13 nucleotides out of 1772 between members of the families Palmariaceae and Rhodophysemataceae. Despite similarities in life history, the acrochaetioid algae Rhodo-chorton purpureum ( Lightfoot ) Rosenvinge and Rhodothamniella floridula ( Dillwyn ) J. Feldmann in Christensen were phylogenetically separated with R. purpureum affiliated weakly with Acrochaetiales, and R. floridula forming a sister branch unequivocally to palmarialean algae of the families Rhodophysemataceae and Palmariaceae . Rhodothamniella floridula is postulated on both molecular and phenotypic grounds ( encompassing biochemical and anatomical characters, and life history features ) to represent an early lineage, Rhodothamniellaceae fam. nov., in the Palmariales. The family Rhodophysemataceae appeared paraphyletic in the sequence analyses, but a monophyletic Rhodophysemataceae could not be rejected by Templeton-Felsenstein or Kishino-Husegawa tests, and the family was clearly monophyletic in analysis of the phenotypic data. The earlier tentative placement of Rhodophysemataceae in the Palmariales rather than Acrochaetiales was confirmed .  相似文献   

17.
Conflicting classifications for the Corallinales were tested by analyzing partial sequences for the nuclear small-subunit ribosomal RNA (SSU) gene of 35 species of coralline algae. Parsimony and likelihood analyses of these data yielded congruent hypotheses that are inconsistent with classifications for the group that include as many as eight subfamilies. Four major clades are resolved within the order, including the early-diverging Sporolithaceae as well as the Melobesioideae and Corallinoideae. The fourth clade, which is supported robustly, includes both nongeniculate and geniculate species classified in the subfamilies Mastophoroideae, Metagoniolithoideae, Lithophylloideae, and Amphiroideae. Molecular and morphological data support the proposal that the latter two subfamilies are sister taxa. Although relationships among some genera are not resolved clearly, the order of branching of taxa among and within the four principal lineages is concordant with paleontological evidence for the group. Relationships inferred among genera within each of the clades is discussed. Seven morphological characters delimiting higher taxonomic groups within the order were combined with the sequence data, analyzed, and optimized onto the resulting tree(s). Except for the presence or absence of genicula, all other characters were found to be phylogenetically informative. Genicula are nonhomologous structures that evolved independently in the Amphiroideae, Corallinoideae, and Metagoniolithoideae. The phenetic practice of separating coralline algae into two categories solely on the basis of the presence or absence of genicula does not accurately reflect the evolutionary history of the group.  相似文献   

18.
Aspects of the reproduction of Bolbocoleon piliferum N. Pringsheim, a common, small, filamentous, endophytic marine green alga, were examined by LM and TEM. These observations were combined with phylogenetic analysis of nuclear‐encoded small subunit rRNA gene sequences to assess the phylogenetic position of B. piliferum. Quadriflagellate zoospores and planozygotes derived from fusion of isogametes yielded plants with identical morphology. Zoosporangia and gametangia divided by sequential cleavages. Plugs at the apices of zoosporangia and gametangia formed during development; tubes were found at zoosporangial and gametangial apices after swarmer release. Flagellar apparatuses of zoospores and gametes were similar to those of algae in the Ulvales (Ulvophyceae), except that terminal caps were entire rather than bilobed and rhizoplasts and “stacked” microtubular root configurations were absent. Structures associated with planozygotes were identical to those observed in other algae currently assigned to Ulotrichales and Ulvales. Molecular phylogenetic analyses placed B. piliferum within the Ulvophyceae, at the base of a clade that contains representatives of the families Ulvaceae, Ulvellaceae, and Kornmanniaceae. The results support an earlier hypothesis that B. piliferum constitutes a distinct lineage. Analyses including Kornmanniaceae recover monophyletic Ulotrichales and Ulvales, whereas analyses omitting the Kornmanniaceae indicate that Ulotrichales is paraphyletic. The structures associated with gamete fusion are conserved within Ulotrichales and Ulvales and perhaps more widely within Chlorophyta.  相似文献   

19.
The phylogenetic position of microfilamentous marine green algae assigned to the species Phaeophila dendroides, Entocladia tenuis (Phaeophila tenuis, and Ochlochaete hystrix was examined through phylogenetic analyses of nuclear‐encoded small subunit rDNA and chloroplast‐encoded tufA gene sequences. These analyses placed the P. dendroides strains within the Ulvophyceae, at the base of a clade that contains representatives of the families Ulvaceae, Ulvellaceae, and the species Bolbocoleon piliferum, supporting an earlier hypothesis that P. dendroides constitutes a distinct lineage. Substantial divergence in both nuclear and plastid DNA sequences exists among strains of P. dendroides from different geographic localities, but these isolated strains are morphologically indistinguishable. The lineage may have an accelerated rate of gene sequence evolution relative to other microfilamentous marine green algae. Entocladia tenuis and O. hystrix are placed neither in the P. dendroides clade nor in the Ulvellaceae as previous taxonomic schemes predicted but instead form a new clade or clades at the base of the Ulvaceae. Ruthnielsenia gen. nov. is proposed to accommodate Kylin's species, which cannot be placed in Entocladia (=Acrochaete), Phaeophila, or Ochlochaete. Ruthnielsenia tenuis (Kylin) comb. nov., previously known only from Atlantic coasts, is reported for the first time from the Pacific coast of North America (San Juan Island, WA, USA). Isolates of R. tenuis from the Atlantic and Pacific coasts of North America have identical small subunit rDNA and tufA gene sequences.  相似文献   

20.
Complete sequences of the Rrn 18 genes were obtained from 13 strains of the nonphotosynthetic algal genus Polytoma. Phylogenetic analyses showed that these strains formed two clades. One clade shows only modest sequence diversity but is represented by strains collected at widely dispersed sites in Europe and America. The other clade consists of a single isolate from the Canary Islands. Both clades lie well within the extended clade that includes all species of Chlamydomonas for which sequence data are available. The two Polytoma clades are separated from each other by several green species, suggesting that the extant nonphotosynthetic Chlamydomonadaceae arose from photosynthetic ancestors at least twice. These results suggest that nonphotosynthetic mutants are capable of establishing lineages that can spread widely but have a higher probability of extinction than their photosynthetic congeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号