共查询到20条相似文献,搜索用时 0 毫秒
1.
The alpha subunit of a plant mitochondrial F1-ATPase is translated in mitochondria 总被引:10,自引:0,他引:10
The mitochondrial F1-ATPase from bean (Vicia faba L.) was solubilized by a chloroform treatment of mitochondrial membranes and purified by centrifugation on a glycerol gradient. The active fraction contained 5 subunits: alpha (Mr = 52,000), beta (Mr = 51,000), gamma (Mr = 34,000), delta (Mr = 23,800), and epsilon (Mr = 22,900). Purified coupled mitochondria were incubated in the presence of [ 35S ]methionine and malate to allow mitochondrial translation to occur. The largest labeled polypeptide (Mr = 52,000) was present in the chloroform extract, co-sedimented with the F1-ATPase on glycerol gradient and co-migrated with the alpha subunit upon two-dimensional electrophoresis. The results indicate that the alpha subunit of bean mitochondrial ATPase is translated on mitoribosomes, in contrast to the situation in other organisms. 相似文献
2.
Three monoclonal antibodies (mAbs) recognizing distinct epitopes on the delta-subunit of beef heart mitochondrial F1-ATPase were studied for their reactivity towards the delta-subunit both in isolated F1 and in the F0-F1 complex of submitochondrial particles. Two of the antibodies termed mAb delta 195 and mAb delta 239 had free access to delta in F1 and the F0-F1 complex. Partial hindrance was observed for the third antibody mAb delta 22. By a double antibinding assay, it was found that the binding sites for mAb delta 195 and mAb delta 239 were close to each other and possibly overlapping. Mapping studies conducted with the isolated delta-subunit showed that mAb delta 195 and mAb delta 239 interacted with the N-terminal portion of delta extending from Ala-1 to Met-16, whereas mAb delta 22 interacted with the fragment spanning Ser-17-Glu-68. It was concluded that the Ala-1-Met-16 segment of the delta-subunit in F1 and the F0-F1 complex is freely accessible from the outside, whereas the Ser-17-Glu-68 segment of delta is partially hidden, possibly as a result of interactions with other subunits. 相似文献
3.
A cDNA library constructed from poly(A)-rich RNA of the sweet potato tuberous root using a newly developed plasmid vector carrying tac-SP6 promoters was used to identify full length cDNAs for the nuclear-encoded delta-subunit of mitochondrial F1-ATPase by oligonucleotide-hybridization selection. Selected clones contained cDNA insert which carry the entire coding capacity for the pre-delta-subunit, since the RNA transcribed in vitro from SP6 promoter on the vector directed the synthesis of pre-delta-subunit polypeptide in a wheat germ in vitro translation assay. The nucleotide sequence of one of these cDNAs indicates that it can code for the pre-delta-subunit of 244 amino acids of which 199 amino acids encode the mature subunit. The amino acid sequence of the mature delta-subunit shows similarities of about 18-25% amino acid positional identity with the delta-subunits of bacterial F1-ATPases, about 26% with the delta-subunit of chloroplast CF1-ATPase, and about 32-37% with oligomycin sensitivity conferring proteins of animal and fungal mitochondria. The N-terminal presequence of the precursor composed of maximum of 45 amino acids does not show any obvious sequence homology with either the transit peptide of the nuclear-encoded pre-delta-subunit of chloroplast CF1 or the presequence of the nuclear-encoded pre-oligomycin sensitivity conferring proteins. At least two types of the delta-subunit cDNAs with very similar structures were identified from the library, and the presence of multiple copies of the delta-subunit gene in the hexaploid genome of the sweet potato is also suggested by genomic Southern blot hybridization. 相似文献
4.
The N-terminal amino acid sequence of the 20 kDa (delta') subunit of the turnip (Brassica napus L.) mitochondrial F1-ATPase has been determined. Comparison of the sequence obtained with those of the epsilon subunits of chloroplast CF1, E. coli F1 and the delta subunit of bovine F1 shows that the turnip delta' subunit is another member of this family of homologous proteins. The delta' subunit of sweet potato F1-ATPase [(1989) J. Biol. Chem. 264, 3183-3186] is very similar to the turnip sequence and thus can also be considered to belong to this family. 相似文献
5.
The effect of guanidine hydrochloride on ATPase activity, gel filtration, turbidity, and the fluorescence emission intensity of mitochondrial F1-ATPase was examined. Purified F1 from bovine heart mitochondria was slowly inactivated at low denaturant concentration, and inactivation was associated with delta and epsilon subunit dissociation. delta and epsilon subunits were bound together to form a stable and soluble heterodimer. In parallel, appearance of turbidity was observed. This was caused by the formation of alpha3beta3gamma non-covalent aggregates, as analyzed by SDS-PAGE. Short periods of exposition of the F1 complex to high concentrations of guanidine hydrochloride (0.8-3 M) again induced deltaepsilon dissociation as a heterodimer and the formation of an inactive alpha3beta3gamma subcomplex. This eventually dissociated progressively into single subunits caused by partial unfolding, as evidenced through changes of the protein intrinsic fluorescence emission. Our results suggest that the delta and epsilon subunits are loosely bound to alpha3beta3gamma , and play an important role in determining structural stability to isolated mitochondrial F1-ATPase. 相似文献
6.
7.
8.
《The International journal of biochemistry》1993,25(5):701-706
- 1.1. The possibility that the rate of ATP hydrolysis by F1-ATPase approaches the diffusion-controlled limits was investigated by measuring the values of kcat and kl (kcat/Km) as a function of increasing viscosity.
- 2.2. The values of kcat/Km decrease significantly with increasing viscosity; further such decrease was lower when F1-ATPase hydrolyzed poor substrate such as Ca- and Mg-ITP or when the hydrolysis rates were measured at temperatures below 20°C.
- 3.3. Viscosity also decreases cat, but only at high concentrations of viscosogenic agents.
- 4.4. These results suggest that ATP hydrolysis is at least partly diffusion-controlled, although a general non-specific perturbation in the enzyme structure is also effected by viscosity.
9.
10.
D M Laird J W Parce R I Montgomery C C Cunningham 《The Journal of biological chemistry》1986,261(31):14851-14856
11.
The mitochondrial F1F0 complex is highly sensitive to macrolide antibiotics and especially targeted by oligomycins. These compounds bind to the membrane-embedded sector F0 and block proton conductance through the inner membrane, thus inhibiting both ATP synthesis and hydrolysis. Oligomycin sensitivity is universally recognized as a clue of the functional integrity and matching between F0 and F1. Since oligomycin binding implies multiple interactions with amino acid residues of F0, amino acid substitutions often affect the inhibition efficiency. Moreover, variegated factors spanning from membrane properties to xenobiotic incorporation and detachment of the oligomycin-insensitive F1 sector can alter the oligomycin sensitivity of the enzyme complex. The overview on the multiple factors involved strengthens the link between altered oligomycin sensitivity and physiopathological conditions associated with defective ATPases. An improved understanding of the mechanisms involved may also favor drug design to counteract oxidative damage, which stems from most mitochondrial dysfunctions. 相似文献
12.
The beta-subunit of the F1F0-ATPase is conserved in mycoplasmas 总被引:4,自引:0,他引:4
D Zilberstein M H Shirvan M F Barile S Rottem 《The Journal of biological chemistry》1986,261(16):7109-7111
Monospecific polyclonal antibodies that were generated against the beta-subunit of Escherichia coli ATPase (F1Fo) cross-reacted with a protein present in the cells of several Mycoplasma and Acholeplasma species. In Mycoplasma gallisepticum, the reactive protein was found almost exclusively in the cell membrane. This protein had an apparent molecular mass of approximately 52 kDa and could not be released from the membranes by repeated washings with either low or high salt solutions in the presence or absence of EDTA. The reactive protein was found to be catalytically active, exhibiting up to 44% of the total membrane-bound ATPase activity. We suggest that mycoplasmas possess a F1Fo-ATPase which undergoes structural modification(s) allowing its integration into the membrane. 相似文献
13.
We have investigated the structure of the mitochondrial F1-ATPase inhibitor protein from ox heart by using a differential trace-labelling method. This method has also been used to determine sites on the inhibitor protein involved in binding to both the isolated mitochondrial ATPase (F1) and to a specific anti-inhibitor antibody. Native, free inhibitor was trace-labelled on its lysine and serine residues with [14C]acetic anhydride, and inhibitor protein unfolded in guanidinium chloride or specifically bound to another protein, with [3H]acetic anhydride. Exposure/concealment of residues was deduced from the 14C/3H ratios of the peptides in a proteolytic digest of the inhibitor, after separation by h.p.l.c. None of the lysine or serine residues in the native inhibitor are as exposed as in the unfolded form. There is a gradient of reactivity, with residues 54-58 being most concealed and exposure increasing towards either end of the protein. A slight decrease in reactivity is noted in residues 1-3, suggesting that the N-terminus may be in a fairly restricted environment. These findings are discussed in the light of the predicted structure of the inhibitor protein. All but one of the labelled residues increases in reactivity when inhibitor protein binds to F1. The exception, Lys-24, is only slightly concealed. Hence, F1 binding appears not to involve the lysine or serine residues directly. This finding is consistent with the view that the F1-inhibitor interaction is hydrophobic in nature. Complementary information was provided using an anti-inhibitor antibody that binds to a site on the inhibitor different from that at which F1 binds. Binding of this antibody conceals residues 54, 58, and 65 considerably. This confirms that F1 does not interact with these hydrophilic residues on the inhibitor protein. 相似文献
14.
It has been suggested that the F1-ATPase β-subunit is the enterostatin receptor. We investigated the binding activity of the purified protein with a labeled antagonist, β-casomorphin1–7, in the absence and presence of cold enterostatin. 125I-β-casomorphin1–7 weakly binds to the rat F1-ATPase β-subunit. Binding was promoted by low concentrations of cold enterostatin but displaced by higher concentrations. To study the relationship between binding activity and feeding behavior, we examined the ability of a number of enterostatin analogs to affect β-casomorphin1–7 binding to the F1-ATPase β-subunit. Peptides that suppressed food intake promoted β-casomorphin1–7 binding whereas peptides that stimulated food intake or did not affect the food intake displaced β-casomorphin1–7 binding. Surface plasmon resonance measurements show that the β-subunit of F1-ATPase binds immobilized enterostatin with a dissociation constant of 150 nM, where no binding could be detected for the assembled F1-ATPase complex. Western blot analysis showed the F1-ATPase β-subunit was present on plasma and mitochondrial membranes of rat liver and amygdala. The data provides evidence that the F1-ATPase β-subunit is the enterostatin receptor and suggests that enterostatin and β-casomorphin1–7 bind to distinct sites on the protein. 相似文献
15.
The interaction of inorganic phosphate with native and nucleotide-depleted F1-ATPase was studied. F1-ATPase depleted of tightly bound nucleotides loses the ability to bind inorganic phosphate. The addition of ATP, ADP, GTP and GDP but not AMP, restores the phosphate binding. The nucleotides affecting the phosphate binding to F1-ATPase are located at the catalytic (exchangeable) site of the enzyme. The phosphate is thought to bind to the same catalytic site where the nucleotide is already bound. It is thought that ADP is the first substrate to bind to F1-ATPase in the ATP synthesis reaction. 相似文献
16.
Soledad Funes Edgar Davidson M Gonzalo Claros Robert van Lis Xochitl Pérez-Martínez Miriam Vázquez-Acevedo Michael P King Diego González-Halphen 《The Journal of biological chemistry》2002,277(8):6051-6058
The atp6 gene, encoding the ATP6 subunit of F(1)F(0)-ATP synthase, has thus far been found only as an mtDNA-encoded gene. However, atp6 is absent from mtDNAs of some species, including that of Chlamydomonas reinhardtii. Analysis of C. reinhardtii expressed sequence tags revealed three overlapping sequences that encoded a protein with similarity to ATP6 proteins. PCR and 5'- and 3'-RACE were used to obtain the complete cDNA and genomic sequences of C. reinhardtii atp6. The atp6 gene exhibited characteristics of a nucleus-encoded gene: Southern hybridization signals consistent with nuclear localization, the presence of introns, and a codon usage and a polyadenylation signal typical of nuclear genes. The corresponding ATP6 protein was confirmed as a subunit of the mitochondrial F(1)F(0)-ATP synthase from C. reinhardtii by N-terminal sequencing. The predicted ATP6 polypeptide has a 107-amino acid cleavable mitochondrial targeting sequence. The mean hydrophobicity of the protein is decreased in those transmembrane regions that are predicted not to participate directly in proton translocation or in intersubunit contacts with the multimeric ring of c subunits. This is the first example of a mitochondrial protein with more than two transmembrane stretches, directly involved in proton translocation, that is nucleus-encoded. 相似文献
17.
Electron microscopy of beef heart mitochondrial F1-ATPase 总被引:1,自引:0,他引:1
The quaternary structure of isolated and membrane-bound F1-ATPase (submitochondrial particles) has been studied by electron microscopy. A model of the molecule has been proposed: six protein masses are arranged in two layers approximately at the vertices of a triangular antiprism. Computer averaging of the images showed that the frontal view of the molecule can be approximately characterized by mirror plane symmetry. 相似文献
18.
An electron microscopic approach to the quaternary structure of mitochondrial F1-ATPase 总被引:3,自引:0,他引:3
The three-dimensional structure of F1-ATPase from beef heart mitochondria was investigated by electron microscopic techniques. The presence of high concentrations of nucleotides is essential for preservation of the quaternary structure. When investigated under such conditions, monodisperse F1-ATPase could not be distinguished from the membrane-bound enzyme. At low resolution, the particle shape resembles an oblate ellipsoid of revolution with an axial ratio of about 2:1. From several lines of evidence (including field micrographs at higher magnifications, Markham rotational analysis, and tilting experiments), two conclusions may be drawn concerning the three-dimensional fine structure of F1-ATPase. 1. At the periphery of the molecule, six globular protein masses are orientated in a way similar to the chair conformation of cyclohexane. This array is interpreted to be made up of an alternating sequence of alpha and beta subunits. 2. Part of the central space is occupied by a seventh protein mass, protrusions of which are likely to be in contact with some of the outer subunits. A gamma subunit is supposed to be constituent part of this central protein mass. As a consequence, this model favours a stoichiometry of alpha 3 beta 3 gamma for the large subunits of beef heart F1-ATPase. 相似文献
19.
A Baracca G Curatola G Parenti Castelli G Solaini 《Biochemical and biophysical research communications》1986,136(3):891-898
Mitochondrial F1-ATPase shows a break in the Arrhenius plot with an increase of the activation energy below 17 degrees C, this may imply that the F1-ATPase undergoes a conformational change at this temperature. Further, a structural change of the F1-ATPase is indicated by analysis of the intrinsic fluorescence at 307 nm between 33 and 11 degrees C and also by evaluation of the circular dichroism spectra of the enzyme at temperatures below and above the temperature corresponding to the discontinuity of the Arrhenius plot. It is therefore suggested that F1-ATPase exists in two temperature dependent conformational states to which different catalytic properties may be assigned. 相似文献
20.
M T De Gómez-Puyou K Nordenbrand U Muller A Gómez-Puyou L Ernster 《Biochimica et biophysica acta》1980,592(3):385-395
The interaction of soluble mitochondrial ATPase from beef heart with the natural ATPase inhibitor was studied. It was found that the phosphorylation of small amounts of ADP by phosphoenolpyruvate and pyruvate kinase, and an ensuing catalytic cycle supports the binding of the inhibitor to the enzyme. The association of the inhibitor with F1-ATPase does not increase the content of ATP in the F1-ATPase-inhibitor complex. The inhibitor of catalytic activity bathophenanthroline-Fe2+ chelate prevents the interaction, while the association of the inhibitor with F1-ATPase is delayed if the reaction is carried out in 2H2O. The date indicate that a transient state involved in the catalytic cycle is the form of the enzyme that interacts with the inhibitor. The proton-motive force-induced dissociation of the inhibitor from particulate ATPase is prevented by bathophenanthroline-Fe2+ chelate and nitrobenzofurazan chloride, which indicates that a functional catalytic (beta) subunit is required for the proton-motive force-induced release of the inhibitor. The data suggest a direct involvement of catalytic (beta) subunit in the mechanism by which the F1-ATPase senses the proton-motive force. 相似文献