首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
随着石油资源的日益枯竭,化石经济面临严峻的挑战,而以町再生生物质资源为基础的生物炼制正展现出其广阔的前景。通过石油炼制与生物炼制的对比,分析了生物炼制任各个方面所具有的优势。并以生物乙烯为例,阐述了其发展现状、存在问题及解决途径、未来发展趋势等。[编者按]  相似文献   

2.
分析了化石经济时代走入末路而将被生物炼制产业经济取代的必然性,生物炼制在原料来源和产品上显示了比石油炼制工艺的优越性,介绍了世界各国生物炼制产业发展状况及我国的现状,总结了生物炼制的基本过程,指出了我国生物炼制产业发展中存在的问题和对策,对全球生物炼制产业做了展望,阐述了生物炼制利用可再生资源是走可持续性经济发展道路的唯一实现途径,它必将引发全球性的技术变革。  相似文献   

3.
微藻生物炼制技术   总被引:2,自引:0,他引:2  
积极发展以生物质原料为基础的生物炼制产业,对于解决能源危机、改善能源结构具有重大意义。微藻作为一种重要的生物质资源,具有分布广、生物量大、光合效率高、环境适应性强、生长周期短和产量高等突出特点,是进行生物炼制的优良材料,它在生产微藻燃料、开发微藻生物制剂和提取生物活性物质等方面具有广阔的开发前景。综述了微藻的培养特点和功能,介绍了微藻生物炼制技术的内容和领域,并对其发展前景作出展望。  相似文献   

4.
由于过度消耗化石资源引发的石油紧缺和温室效应问题,巳逐步影响到人类社会可持续发展的宗旨,开发能替代化石能源需求的新能源日渐急迫.生物质能源是化石能源的替代能源之一,对生物质能源炼制的研究成为很多人的关注热点.生物炼制产品的工业化,是形成可持续性的生物炼制品产业经济的关键.我国政府已经把发展生物质能源作为国家发展战略的一部分,确定了具体的发展目标,制定了相应的研发计划,出台了一系列法规以促进生物质能产业的健康发展.我国生物炼制技术在生物燃料、生物柴油、生物基化学品等领域取得了明显进步.本文主要综述生物炼制技术的研究进展及其产业发展情况.  相似文献   

5.
马延和 《生物工程学报》2010,26(10):1321-1326
对生物炼制细胞工厂的发展进行了简要回顾,从微生物糖代谢的分子机制、细胞工厂的代谢网络及调控、细胞工厂的构建技术及细胞工厂的优化4个方面介绍了本期专刊发表的17篇生物炼制细胞工厂方面的论文。  相似文献   

6.
生物炼制——实现可持续发展的新型工业模式   总被引:9,自引:1,他引:8  
当前社会经济的可持续发展正面临着能源资源短缺、生态环境恶化的空前挑战。以可再生的生物质资源替代不可再生的化石资源、实现工业模式从石油炼制向生物炼制的根本转变,是转变经济增长模式、保障社会经济可持续发展的重大战略需求。对生物炼制这一新型工业模式进行了简单介绍。  相似文献   

7.
以木质纤维素生物质为原料的生物炼制技术已成为全球研发的热点和难点。欧盟国家和美国的中长期生物质能源发展路线图中均将木质纤维素生物炼制技术作为重要目标,但是目前整体水平尚处于中试阶段。我国的纤维素类生物质原料非常丰富,将其转化成燃料乙醇及生物基础化学品等具有较大的潜力,但当前要想实现商业化生产,还面临着很多瓶颈问题亟待解决。缺乏能够同时高效利用纤维素类水解物的发酵菌株,已成为纤维素生物质高效与高值转化的关键制约因素。运动发酵单胞菌是目前唯一一种通过ED途径兼性厌氧发酵葡萄糖的微生物,其独特的代谢途径使其成为构建产乙醇工程菌的优选宿主之一;同时由于该菌具有较高的糖利用效率等优点,也是其他生物基化学品生产的重要候选平台微生物,如山梨醇、葡萄糖酸、丁二酸和异丁醇等。本文从该菌的研究历程、分子生物学基础、菌种改良及该菌在生物能源及生物基化学品等生物炼制体系中的应用研究角度进行了综述,并提出该菌可作为纤维素生物质生物炼制系统的新的重要平台微生物。  相似文献   

8.
生物炼制是许多生物过程的整合.通过生物炼制过程能够制造出食品、衣服、燃料,化学品以及其他能为人类所用的产品。近年来,由于世界性的能源危机.将自然产物向生物燃料的转换已成了焦点话题。但是人们对自然产物的炼制并不属于一项创新.而是历史上第二古老的行业,这一行业涉及生物质向乙醇的转换。笔者在发言中介绍了生物材料向人类有用产品转换的进展情况。  相似文献   

9.
木质素高值转化对于提升生物炼制经济性,促进社会经济绿色发展具有重要意义。然而,木质素结构复杂且不均一,其高值化利用仍存在技术壁垒,使得木质素应用尚未形成规模。文中首先综述了当前生物炼制过程中木质素高值转化面临的主要挑战。然后通过比较不同预处理技术对木质素分离、性质及其利用的主要影响,详细阐述了基于生物炼制理念发展的新型组合预处理技术。其次,针对木质素本征结构特性导致其利用效率低等问题,进一步详述了溶剂分级、膜分级、梯度沉淀分级等分级利用策略对克服木质素不均一性,改善其可加工性能的重要影响。再次,针对木质素利用策略,系统比较了木质素热化学转化和生物转化,结合生物质预处理及木质素分级,阐述了以生物炼制理念进行木质素高值转化的新策略。最后,总结了木质素利用过程中存在的挑战性问题,展望了木质素高效分离、分级及转化过程发展的新策略和新趋势。  相似文献   

10.
木质纤维素降解酶系的高效生产是实现植物生物质大规模生物炼制的重要支撑。就地生产木质纤维素降解酶,有助于降低其使用成本,提高技术经济效益。青霉是自然界常见的木质纤维素降解真菌,可以合成分泌种类多样、组分齐全的木质纤维素降解酶系,已被应用于纤维素酶制剂的工业生产。文中从就地生产降解酶,为木质纤维素生物炼制构建“糖平台”的角度,综述了青霉木质纤维素降解酶系的性质、菌株遗传改造及发酵工艺的研究进展。  相似文献   

11.
生物柴油研究进展   总被引:11,自引:0,他引:11  
介绍了国内外生物柴油的发展现状,探讨了我国发展生物柴油的原料来源途径,包括木本油料植物、转基因油料作物、废弃油脂、微生物油脂和微藻油脂等,综述了制备生物柴油的化学法、酶法、超临界法等生产技术及其进展,概括了当前生物柴油主要的品质问题与改性对策,分析了生物柴油副产物的高值化利用策略,指出了我国生物柴油产业化面临的原料、技术和生物炼制方面的主要问题。  相似文献   

12.
木质素为天然的芳香族聚合物,是自然界第二大丰富的可再生碳源,占木质纤维素干重的15%~30%。因木质素富含芳香族结构,故其具有极高的应用价值。生物法转化利用木质素具有专一性强和环境友好等特点,使得木质素生物炼制成为研究热点。本文根据国内外研究进展,从木质素降解酶的研究现状、芳香族化合物胞内代谢途径及木质素生物基化学品研究进展等几个方面做了综述。  相似文献   

13.
1982年.生物炼制的概念在《science》上首次被提出。生物炼制.就是说以生物质为基础的化学工业也必须打破原来用生物质单纯生产单一产品的传统观念.充分利用原料中的每一种组分,将其分别转化为不同的产品.实现原料充分利用、产品价值最大化和土地利用效率最大化。目前.生物炼制已经成为世界各国研究的热点.主要内容包括生物材料、生物基化学品、生物能源、生物基原料、生物炼制平台技术等。  相似文献   

14.
<正>菊芋具有耐寒和耐旱等优点,可在非耕地种植,是重要的非粮能源植物,也是生物炼制研究的主要果糖基原料来源。利用菊芋的生物炼制生产生物燃料和生物基化学品具有广阔的发展前景。文章讨论了如何利用菊芋全植株的生物转化进行生物炼制,并重点对利用菊芋生产燃料乙醇的技术路线进行了论述。  相似文献   

15.
柯为 《生物工程学报》2008,24(3):520-520
生物炼制技术(Biorefinery techniques)涉及面很广,既有传统性,又有现代性,应用面非常广泛,传统的生物制酒、制酱油、制豆腐乳等在我国已有悠久的历史。现代的生物炼制技术这些年有较快的发展,如经基因技术改造或重组的“运动发酵单胞菌”用于生产乙醇;又如经基因工程技术重组受体菌即“工程毕赤酵母”高效生产某些酶制剂产品用于发展饲料产业、乳品产业等  相似文献   

16.
前言 资源短缺和环境污染问题已成为制约世界经济可持续发展的瓶颈.以可再生且环境友好的生物质资源替代化石资源已成为解决资源和环境问题的主要途径之一①,Henry R.Bungay②在1982年针对生物质资源开发与利用提出了生物炼制(Bio-Refinery)这一概念.美国国家可再生能源实验室(U.S.NREL)将生物炼制定义为将生物质原料转化为燃料、电热能和化学产品的生物质转化工艺与设备的集成.生物炼制的原料主要有:含纤维素的生物质和废弃物、谷类或玉米、青草、苜蓿、微藻等.其中微藻是一类在海洋、湖泊等水体中广泛分布的微型植物,能够利用光能固定CO2实现自养,其细胞中含有丰富的油脂、色素、蛋白质、维生素等成分.微藻生物炼制是以微藻为原料,生产各种化学品、燃料、生物基材料和食品等产品的工艺与设备的集成.  相似文献   

17.
<正>为促进纤维素丁醇产业的发展,并为生物丁醇研究提供借鉴,文章介绍了生物丁醇发展的历史与其工艺流程,分析了纤维素丁醇生产中不同技术的优缺点以及瓶颈。同时结合生物炼制技术,提出提高其生产性能的建议。  相似文献   

18.
资源匮乏、能源短缺和环境污染日趋恶化等现实问题,已经成为社会可持续发展的巨大障碍。工业生物技术作为生物技术发展的第三次浪潮,是解决目前人类所面临的资源、能源与环境问题的有效途径之一,是工业可持续发展最有希望的技术。本期“中国工业生物技术发展高峰论坛·2008”专刊, 集中展现了我国工业生物技术专家学者在生物炼制和生物基化学品、微生物基因组学和生物信息学、代谢工程与药物研发、现代工业酶技术、生物炼制细胞工厂、生物催化与生物转化、工业生物过程技术以及工业微生物菌种的选育和改良等工业生物技术领域所取得的最新进展。希望通过专刊的出版, 更好地促进我国工业生物技术领域的交流和发展。  相似文献   

19.
资源匮乏、能源短缺和环境污染日趋恶化等现实问题,已经成为社会可持续发展的巨大障碍。工业生物技术作为生物技术发展的第三次浪潮,是解决目前人类所面临的资源、能源与环境问题的有效途径之一,是工业可持续发展最有希望的技术。本期“中国工业生物技术发展高峰论坛·2008”专刊, 集中展现了我国工业生物技术专家学者在生物炼制和生物基化学品、微生物基因组学和生物信息学、代谢工程与药物研发、现代工业酶技术、生物炼制细胞工厂、生物催化与生物转化、工业生物过程技术以及工业微生物菌种的选育和改良等工业生物技术领域所取得的最新进展。希望通过专刊的出版, 更好地促进我国工业生物技术领域的交流和发展。  相似文献   

20.
几年前美国一家国家实验室研究人员发明生物炼制石油技术,即用一种极端纤细细菌的催化作用炼制优质的石油产品,该菌能在高温(60℃)下分离重油(注:重油指非常规石油的统称。包括重质油、高粘油、油沙、天然沥青等)中的硫氢、重金属物,使这些杂质含量降低20%~50%左右。这种生物炼油技术不仅提高“生物石油”的质量,而且更有利于环保。在炼制生物石油方面除细菌外,有些微藻也值得注意,一种叫丛粒藻(Botryococcus braunii,又称葡萄藻)的单胞藻,它产生的碳氢化合物占其干物质重量的15%~75%,最高达到90%,其组成与原油极为类似,经过加工处理后达到真正石油的指标。除了该藻藻体有“储能库”之称以外,微藻中还有小球藻、盐藻(均系绿藻类)等均有“储能”的潜力,都可用透明玻璃管作为“生物反应器”,通入含1%CO2的空气,对数增殖期测定其产烃量,已达到占细胞干重的16%-44%,每天可从藻体生物量中索取大量油烃化合物,完全有可能利用“环型玻璃管生物反应器”按需求量扩大再生产,从其生物量炼制生物石油。在美国,哈佛大学和斯坦福大学有关专家组建了一家公司想从生物炼油开辟新径:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号