首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Fate and dissemination of Bacillus subtilis spores in a murine model   总被引:1,自引:0,他引:1  
Bacterial spores are being consumed as probiotics, although little is known about their efficacy or mode of action. As a first step in characterizing spore probiotics, we have studied the persistence and dissemination of Bacillus subtilis spores given orally to mice. Our results have shown that spores do not appear to disseminate across the mucosal surfaces. However, we found that the number of spores excreted in the feces of mice was, in some experiments, larger than the original inoculum. This was an intriguing result and might be explained by germination of a proportion of the spore inoculum in the intestinal tract, followed by limited rounds of cell growth and then sporulation again. This result raises the interesting question of whether it is the spore or the germinated spore that contributes to the probiotic effect of bacterial spores.  相似文献   

2.
3.
Bacillus subtilis spores have received growing attention regarding potential biotechnological applications, including the use as probiotics and in vaccine formulations. B. subtilis spores have also been shown to behave as particulate vaccine adjuvants, promoting the increase of antibody responses after co-administration with antigens either admixed or adsorbed on the spore surface. In this study, we further evaluated the immune modulatory properties of B. subtilis spores using a recombinant HIV gag p24 protein as a model antigen. The adjuvant effects of B. subtilis spores were not affected by the genetic background of the mouse lineage and did not induce significant inflammatory or deleterious effects after parenteral administration. Our results demonstrated that co-administration, but not adsorption to the spore surface, enhanced the immunogenicity of that target antigen after subcutaneous administration to BALB/c and C57BL/6 mice. Spores promoted activation of antigen presenting cells as demonstrated by the upregulation of MHC and CD40 molecules and enhanced secretion of pro-inflammatory cytokines by murine dendritic cells. In addition, in vivo studies indicated a direct role of the innate immunity on the immunomodulatory properties of B. subtilis spores, as demonstrated by the lack of adjuvant effects on MyD88 and TLR2 knockout mouse strains.  相似文献   

4.
It is generally assumed that spore behavior is independent of spore concentration, but recently published mathematical models indicate that this is not the case. A Monte Carlo simulation was employed in this study to further examine the independence assumption by evaluating the inherent variance in spore germination data. All simulations were carried out with @Risk software. A total of 500 to 4,000 iterations were needed for each simulation to reach convergence. Lag time and doubling time from a higher inoculum concentration were used to simulate the time to detection (TTD) at a lower inoculum concentration under otherwise identical environmental conditions. The point summaries of the simulated and observed TTDs were recorded for the 26 simulations, with kinetic data at the target inoculum concentration. The ratios of the median (Rm = medianobs/mediansim) and 90% range (Rr = 90% rangeobs/90% rangesim) were calculated. Most Rm and Rr values were greater than one, indicating that the simulated TTDs were smaller and more homogeneous than the observed ones. Rr values departed farther from one than Rm values. Ratios obtained when simulating 1 spore with 10,000 spores deviated the farthest from one. Neither ratio was significantly different from the other when simulating 1 spore with 100 spores or simulating 100 spores with 10,000 spores. When kinetic data were not available, the percent positive observed at the 95th percentile of the simulated TTDs was obtained. These simulation results confirmed that the assumption of independence between spores is not valid.  相似文献   

5.
The effect of V8 juice concentration (5 to 40%, vol/vol), spore inoculum density (105 and 107 spores per ml), and liquid batch or fed-batch culture condition on mycelium and spore production by Colletotrichum gloeosporioides was evaluated. The amount of mycelium produced, the time required for initiation of sporulation following attainment of maximum mycelium, and the time for attainment of maximum spore concentration increased with increasing V8 juice concentration in batch culture. Cultures containing V8 juice at >10% achieved a similar spore density (apparent spore-carrying capacity) of about 0.8 mg of spores per ml (1 × 107 to 2 × 107 spores per ml) independent of inoculum density and V8 juice concentration. The relative spore yield decreased from a high of 64% of the total biomass for the low-inoculum 5% V8 culture, through 13% for the analogous 40% V8 culture, to a low of 2% for the high-inoculum 27% V8 culture. Fed-batch cultures were used to establish conditions of high spore density and low substrate availability but high substrate flux. The rate of addition of V8 juice was adjusted to approximate the rate of substrate utilization by the (increasing) biomass. The final spore concentration was about four times higher (3.0 mg of spores per ml) than the apparent spore-carrying capacity in batch culture. This high spore yield was obtained at the expense of greatly reduced mycelium, resulting in a high relative spore yield (62% of the total biomass). Microcycle conidiation occurred in the fed-batch but not batch systems. These data indicate that substrate-limited, fed-batch culture can be used to increase the amount and efficiency of spore production by C. gloeosporioides by maintaining microcycle conidiation conditions favoring allocation of nutrients to spore rather than mycelium production.  相似文献   

6.
We studied the inoculum size effect in Ceratocystis ulmi, the dimorphic fungus that causes Dutch elm disease. In a defined glucose-proline-salts medium, cells develop as budding yeasts when inoculated at ≥106 spores per ml and as mycelia when inoculated at <106 spores per ml. The inoculum size effect was not influenced by inoculum spore type, age of the spores, temperature, pH, oxygen availability, trace metals, sulfur source, phosphorous source, or the concentration of glucose or proline. Similarly, it was not influenced by added adenosine, reducing agents, methyl donors, amino sugars, fatty acids, or carbon dioxide. Instead, growing cells excreted an unknown quorum-sensing factor that caused a morphological shift from mycelia to budding yeasts. This yeast-promoting effect is abolished if it is extracted with an organic solvent such as ethyl acetate. The quorum-sensing activity acquired by the organic solvent could be added back to fresh medium in a dose-dependent fashion. The quorum-sensing activity in C. ulmi spent medium was specific for C. ulmi and had no effect on the dimorphic fungus Candida albicans or the photomorphogenic fungus Penicillium isariaeforme. In addition, farnesol, the quorum-sensing molecule produced by C. albicans, did not inhibit mycelial development of C. ulmi when present at concentrations of up to 100 μM. We conclude that the inoculum size effect is a manifestation of a quorum-sensing system that is mediated by an excreted extracellular molecule, and we suggest that quorum sensing is a general phenomenon in dimorphic fungi.  相似文献   

7.
Bacillus subtilis endospores have applications in different fields including their use as probiotics and antigen delivery vectors. Such specialized applications frequently require highly purified spore preparations. Nonetheless, quantitative data regarding both yields and purity of B. subtilis endospores after application of different growth conditions and purification methods are scarce or poorly reported. In the present study, we conducted several quantitative and qualitative analyses of growth conditions and purification procedures aiming generation of purified B. subtilis spores. Based on two growth media and different incubations conditions, sporulation frequencies up to 74.2 % and spore concentrations up to 7 × 109 spores/ml were achieved. Application of a simplified spore isolation method, in which samples were incubated with lysozyme and a detergent, resulted in preparations with highly purified spores at the highest yields. The present study represents, therefore, an important contribution for those working with B. subtilis endospores for different biotechnological purposes.  相似文献   

8.
AIMS: The effect of spore density on the germination (time-to-germination, percent germination) of Bacillus megaterium spores on tryptic soy agar was determined using direct microscopic observation. METHODS AND RESULTS: Inoculum size varied from approximately 10(3) to 10(8) cfu ml(-1) in a medium where pH=7 and the sodium chloride concentration was 0.5% w/v. Inoculum size was measured by global inoculum size (the concentration of spores on a microscope slide) and local inoculum size (the number of spores observed in a given microscope field of observation). Both global and local inoculum sizes had a significant effect on time-to-germination (TTG), but only the global inoculum size influenced the percentage germination of the observed spores. CONCLUSIONS: These results show that higher concentrations of Bacillus megaterium spores encourage more rapid germination and more spores to germinate, indicating that low spore populations do not behave similarly to high spore populations. SIGNIFICANCE AND IMPACT OF THE STUDY: A likely explanation for the inoculum size-dependency of germination would be chemical signalling or quorum sensing between Bacillus spores.  相似文献   

9.
The loss of Bacillus subtilis penicillin-binding protein (PBP) 2a, encoded by pbpA, was previously shown to slow spore outgrowth and result in an increased diameter of the outgrowing spore. Further analyses to define the defect in pbpA spore outgrowth have shown that (i) outgrowing pbpA spores exhibited only a slight defect in the rate of peptidoglycan (PG) synthesis compared to wild-type spores, but PG turnover was significantly slowed during outgrowth of pbpA spores; (ii) there was no difference in the location of PG synthesis in outgrowing wild-type and pbpA spores once cell elongation had been initiated; (iii) outgrowth and elongation of pbpA spores were dramatically affected by the levels of monovalent or divalent cations in the medium; (iv) there was a partial redundancy of function between PBP2a and PBP1 or -4 during spore outgrowth; and (v) there was no difference in the structure of PG from outgrowing wild-type spores or spores lacking PBP2a or PBP2a and -4; but also (vi) PG from outgrowing spores lacking PBP1 and -2a had transiently decreased cross-linking compared to PG from outgrowing wild-type spores, possibly due to the loss of transpeptidase activity.  相似文献   

10.
Pulmonary exposure to Bacillus anthracis spores initiates inhalational anthrax, a life-threatening infection. It is known that dormant spores can be recovered from the lungs of infected animals months after the initial spore exposure. Consequently, a 60-day course antibiotic treatment is recommended for exposed individuals. However, there has been little information regarding details or mechanisms of spore persistence in vivo. In this study, we investigated spore persistence in a mouse model. The results indicated that weeks after intranasal inoculation with B. anthracis spores, substantial amounts of spores could be recovered from the mouse lung. Moreover, spores of B. anthracis were significantly better at persisting in the lung than spores of a non-pathogenic Bacillus subtilis strain. The majority of B. anthracis spores in the lung were tightly associated with the lung tissue, as they could not be readily removed by lavage. Immunofluorescence staining of lung sections showed that spores associated with the alveolar and airway epithelium. Confocal analysis indicated that some of the spores were inside epithelial cells. This was further confirmed by differential immunofluorescence staining of lung cells harvested from the infected lungs, suggesting that association with lung epithelial cells may provide an advantage to spore persistence in the lung. There was no or very mild inflammation in the infected lungs. Furthermore, spores were present in the lung tissue as single spores rather than in clusters. We also showed that the anthrax toxins did not play a role in persistence. Together, the results suggest that B. anthracis spores have special properties that promote their persistence in the lung, and that there may be multiple mechanisms contributing to spore persistence.  相似文献   

11.
12.
The effect of spore inoculum density, medium concentration, and temperature on slime-spot formation, spore yield, and mycelium production by Colletotrichum gloeosporioides on agar media were studied with a simple microplate assay. A steady-state spore yield (spore-carrying capacity) independent of inoculum density was reached only on media that supported good fungal growth and sporulation. The spore-carrying capacity was reached earlier, the denser the inoculum. On standard mycological media a high inoculum density (2.5 × 106 spores per ml) resulted in a slimy mass of conidia forming a slime spot, a phenomenon associated with greatly reduced mycelium formation and indicative of microcycle conidiation. In contrast, for a similar inoculum density, enhanced mycelial growth preceded sporulation and overrode slime-spot formation on highly concentrated media; a very low medium concentration resulted in much less mycelium, but spore production was also decreased. Exposure to suboptimal growth temperatures of 36 to 48°C for up to 8 days did not induce microcycle conidiation from inocula that did not form a slime spot at 28°C.  相似文献   

13.
Spores of Bacillus anthracis, the causative agent of anthrax, are known to persist in the host lungs for prolonged periods of time, however the underlying mechanism is poorly understood. In this study, we demonstrated that BclA, a major surface protein of B. anthracis spores, mediated direct binding of complement factor H (CFH) to spores. The surface bound CFH retained its regulatory cofactor activity resulting in C3 degradation and inhibition of downstream complement activation. By comparing results from wild type C57BL/6 mice and complement deficient mice, we further showed that BclA significantly contributed to spore persistence in the mouse lungs and dampened antibody responses to spores in a complement C3-dependent manner. In addition, prior exposure to BclA deletion spores (ΔbclA) provided significant protection against lethal challenges by B. anthracis, whereas the isogenic parent spores did not, indicating that BclA may also impair protective immunity. These results describe for the first time an immune inhibition mechanism of B. anthracis mediated by BclA and CFH that promotes spore persistence in vivo. The findings also suggested an important role of complement in persistent infections and thus have broad implications.  相似文献   

14.
The quantitative pathogenicity of the microsporidian Octosporea muscaedomesticae in adult Phormia regina was studied. Dosage levels ranging from 102 to 106 spores per fly were administered to five and six groups of newly emerged, starved adult flies in two trials. Rates of mortality and infection were determined. A direct relationship between number of spores ingested and subsequent infection rate was found in a 4-day trial while no such relationship was found in an 18-day trial, using the same source of inoculum and host flies from the same colony. The lack of a direct relationship between spore dose and rate of infection in the 18-day trial is explained on the basis of the short spore-to-spore development time of the parasite. New generations of spores formed within the host tissues obscure the results in relation to the spore dose initially administered. An appreciable number of spores in the inoculum is needed to initiate frank infection. The ID50 (median infective dose) was 4.4 × 104 spores per fly after 4 days.  相似文献   

15.

Aims and Background

The aim was to investigate the diversity and distribution of Glomeromycotan fungi forming arbuscular mycorrhizal associations (AMF) in undisturbed and disturbed habitats in the vicinity of Kakadu National Park in tropical Australia. This is a tropical region with a 7–9 month dry season and a monsoonal wet season. Complimentary methods of fungus detection were used to investigate the diversity and relative dominance of AMF at a regional scale.

Methods

Soils were sampled from 32 sites, representing eucalypt savanna woodlands, wetlands, sandstone escarpment, rainforest, and disturbed mine waste rock dumps (overburden or spoil). Populations of AMF were identified and quantified using spores from soil. Morphology patterns of fungi colonising bait plant roots were examined and isolates were obtained by four complimentary pot-culturing methods.

Results

Different methods of detecting fungi produced different answers about which AMF were most important in the tested soils. In particular, spore surveys apparently underestimated the importance of Glomus species and overestimated the activity of Acaulospora species with numerous small spores, while calculated spore biovolumes overestimated the importance of Scutellospora and Gigaspora species with large spores, relative to inoculum levels of these fungus categories measured in bioassays. Spore surveys revealed 15 species of fungi and 8 additional fungi were recovered from the same soil samples using pot-culture isolation methods. Pot-cultures were especially important for detecting Glomus species that had high inoculum levels, but rarely produced spores in soils. Spores of AMF increased in abundance as vegetation developed in mine habitats reaching a peak that was higher than in undisturbed plant communities. Spore numbers (but not biovolumes) were well correlated with bioassay measurements of inoculum levels.

Conclusions

Most AMF species were widespread, but several were restricted to disturbed habitats or wetland soils. Undisturbed sites had a substantially higher diversity of AMF than partially vegetated mine waste rock dumps. It is recommended that AMF population surveys should not be based entirely on spore occurrence data, to avoid overlooking important fungi that sporulate infrequently. These fungi could be detected by bioassays or pot culture isolation from soil. Major variations in the detectability of AMF correspond to different life history strategies and can mask variations in their abundance.  相似文献   

16.
Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.  相似文献   

17.
Equivalent numbers of spores were produced when the microsporidan Nosema necatrix was propagated in either Trichoplusia ni or Heliothis zea. Maximum spore production was obtained at an inoculum level of 1 × 105 spores/ml. Larvae inoculated 5 days post-hatching contained 1.6 × 109 spores/gram larva after an incubation period of 21 days. Temperature optima for the parasite are 21–26°C in both hosts.  相似文献   

18.
19.
Immunoproteomics was used to screen the immunogenic spore and vegetative proteins of Bacillus anthracis vaccine strain A16R. The spore and vegetative proteins were separated by 2D gel electrophoresis and transferred to polyvinylidene difluoride membranes, and then western blotting was performed with rabbit immune serum against B.anthracis live spores. Immunogenic spots were cut and digested by trypsin. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry was performed to identify the proteins. As a result, 11 and 45 immunogenic proteins were identified in the spores and vegetative cells, respectively; 26 of which have not been reported previously. To verify their immunogenicity, 12 of the identified proteins were selected to be expressed, and the immune sera from the mice vaccinated by the 12 expressed proteins, except BA0887, had a specific western blot band with the A16R whole cellular lytic proteins. Some of these immunogenic proteins might be used as novel vaccine candidates themselves or for enhancing the protective efficacy of a protective-antigen-based vaccine.  相似文献   

20.
A major event in the nutrient germination of spores of Bacillus species is release of the spores'' large depot of dipicolinic acid (DPA). This event is preceded by both commitment, in which spores continue through germination even if germinants are removed, and loss of spore heat resistance. The latter event is puzzling, since spore heat resistance is due largely to core water content, which does not change until DPA is released during germination. We now find that for spores of two Bacillus species, the early loss in heat resistance during germination is most likely due to release of committed spores'' DPA at temperatures not lethal for dormant spores. Loss in spore acid resistance during germination also paralleled commitment and was also associated with the release of DPA from committed spores at acid concentrations not lethal for dormant spores. These observations plus previous findings that DPA release during germination is preceded by a significant release of spore core cations suggest that there is a significant change in spore inner membrane permeability at commitment. Presumably, this altered membrane cannot retain DPA during heat or acid treatments innocuous for dormant spores, resulting in DPA-less spores that are rapidly killed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号