首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simplified ribonuclease protection assay.   总被引:11,自引:0,他引:11  
Y Hod 《BioTechniques》1992,13(6):852-854
  相似文献   

2.
A faster ribonuclease protection assay.   总被引:6,自引:0,他引:6  
  相似文献   

3.
The compactness of ribonuclease A with intact disulfide bonds and reduced ribonuclease A was investigated by synchrotron small-angle X-ray scattering. The Rg values and the Kratky plots showed that non-reduced ribonuclease A maintain a compact shape with a Rg value of about 17.3 Å in 8 M urea. The reduced ribonuclease A is more expanded, its Rg value is about 20 Å in 50 mM Tris-HCl buffer at pH 8.1 containing 20 mM DTT. Further expansions of reduced ribonuclease A were observed in the presence of high concentrations of denaturants, indicating that reduced ribonuclease A is more expanded and is in neither a random coil [A. Noppert et al., FEBS Lett. 380 (1996) 179–182] nor a compact denatured state [T.R. Sosnick and J. Trewhella, Biochemistry 31 (1992) 8329–8335]. The four disulfide bonds keep ribonuclease A in a compact state in the presence of high concentrations of urea.  相似文献   

4.
RNase S is a complex consisting of two proteolytic fragments of RNase A: the S peptide (residues 1-20) and S protein (residues 21-124). RNase S and RNase A have very similar X-ray structures and enzymatic activities. Previous experiments have shown increased rates of hydrogen exchange and greater sensitivity to tryptic cleavage for RNase S relative to RNase A. It has therefore been asserted that the RNase S complex is considerably more dynamically flexible than RNase A. In the present study we examine the differences in the dynamics of RNase S and RNase A computationally, by MD simulations, and experimentally, using trypsin cleavage as a probe of dynamics. The fluctuations around the average solution structure during the simulation were analyzed by measuring the RMS deviation in coordinates. No significant differences between RNase S and RNase A dynamics were observed in the simulations. We were able to account for the apparent discrepancy between simulation and experiment by a simple model. According to this model, the experimentally observed differences in dynamics can be quantitatively explained by the small amounts of free S peptide and S protein that are present in equilibrium with the RNase S complex. Thus, folded RNase A and the RNase S complex have identical dynamic behavior, despite the presence of a break in polypeptide chain between residues 20 and 21 in the latter molecule. This is in contrast to what has been widely believed for over 30 years about this important fragment complementation system.  相似文献   

5.
6.
Ribonuclease A has been guanidinated at the lysine residues and the nona-guanidinated and deca-guanidinated (fully substituted) products separated. In confirmation of an earlier report by Glick and Barnard (1970), it has been shown by chemical procedures that the former derivative is not reacted at lysine-41. Guanidination of lysine-41 to produce the fully substituted product causes loss of enzymic activity without any apparent change of conformation, as tested by conformational comparisons (using proton magnetic resonance spectroscopy) including (a) difference spectroscopy, evidence for the involvement of lysine-41 in a catalytic role in the enzyme. Dimethylation of lysine-41 of nona-guanidinated ribonuclease A produces sharp proton resonances which shifts as the dimethylamino group is titrated and allow the determination of an apparent pK of 8.8 for unsubstituted lysine-41.  相似文献   

7.
8.
The change in heat capacity deltaCp for the folding of ribonuclease A was determined using differential scanning calorimetry and thermal denaturation curves. The methods gave equivalent results, deltaCp = 1.15+/-0.08 kcal mol(-1) K(-1). Estimates of the conformational stability of ribonuclease A based on these results from thermal unfolding are in good agreement with estimates from urea unfolding analyzed using the linear extrapolation method.  相似文献   

9.
Despite the increasing number of successful determinations of complex protein structures the understanding of their dynamics properties is still rather limited. Using X-ray crystallography, we demonstrate that ribonuclease A (RNase A) undergoes significant domain motions upon ligand binding. In particular, when cytidine 2'-monophosphate binds to RNase A, the structure of the enzyme becomes more compact. Interestingly, our data also show that these structural alterations are fully reversible in the crystal state. These findings provide structural bases for the dynamic behavior of RNase A in the binding of the substrate shown by Petsko and coworkers (Rasmussen et al. Nature 1992;357:423-424). These subtle domain motions may assume functional relevance for more complex system and may play a significant role in the cooperativity of oligomeric enzymes.  相似文献   

10.
The proposed interaction between the amino acid residues Asp 14 and His 48 of ribonuclease A has been confirmed by 13C-NMR spectroscopy. The titration behaviour of the resonance of the side-chain carboxyl group of Asp 14 suggests a pKa of 6.5--7.0 for His 48. An equilibrium between different conformation process of His 48. Upon this deprotonation a hydrogen bond between the side-chains of Asp 14 or His 48 and Tyr 25 seems to be formed as is suggested by the behaviour of a tyrosine C zeta resonance assigned to Tyr 25. One phenylalanine resonance broadens and moves upfield on the addition of the inhibitor Cyd-2'-P, being therefore assigned to Phe 120. The behaviour of this resonance suggests that the upfield shift results from the anisotropy of the cytidine ring. Three signals are assigned to the three Phe residues.  相似文献   

11.
12.
The folding and unfolding kinetics within the transition region were measured for RNase A and for RNase T1. The data were used to evaluate the theoretical models for the influence of prolyl isomerization on the observed folding kinetics. These two proteins were selected, since the folding reaction of RNase A is faster than prolyl isomerization, whereas in RNase T1, folding is slower than isomerization in the transition region. Folding of RNase T1 was investigated for three variants with different numbers of cis prolyl residues. The results indicate that in the transition region the folding rates are indeed strongly dependent on the number of prolyl residues. The variant of RNase T1 that contains only one cis prolyl residue folds about ten times faster than two variants that contain two cis prolyl residues. For both RNase A and RNase T1, the apparent rates of folding and unfolding as well as the corresponding amplitudes depend on the concentration of denaturant in a manner that was predicted by the model calculations. When refolding was started from the fast-folding species, additional kinetic phases could be observed in the transition region for both proteins. The obtained values could be used to calculate the microscopic rate constants of folding and isomerization on the basis of theoretical models.  相似文献   

13.
Human granulocytes contain an RNase which is thermostable at pH 4.2 and thermolabile at pH 8.5. It has a pH optimum at 6.5. It exhibits highest preference for the secondary phosphate esters of uridine 3′-phosphates. It has no action on uridine 2′: 3′-cyclic phosphates. Poly (A) and poly (G) are inert to its action. Its rate of hydrolysis of poly (C) is about 1% of that of poly (U). It differs from bovine pancreatic RNase and human serum RNase. Because of its unique specificity, this enzyme might serve as a biochemical marker in certain granulocyte disorders.  相似文献   

14.
15.
Acetoacetylation of ribonuclease A   总被引:1,自引:0,他引:1  
  相似文献   

16.
17.
A reliable external control for ribonuclease protection assays.   总被引:1,自引:0,他引:1       下载免费PDF全文
A method is described for generating an external spiked human RNA control to enhance the reliability of assessment of gene expression in tumour extracts. Spiking with an external standard RNA controls for all subsequent steps of analysis on a lane by lane basis and allows for uniform comparison of the gene of interest as a fraction of total RNA, particularly when multiple samples are not available. The antisense probe that is being used to detect endogenous gene expression is also used as an external control. A sense riboprobe is made from the same vector. Because of the flanking RNA polymerase sites incorporated in both probes, hybridization with the sense riboprobe at a much lower concentration than the antisense probe generates a larger product that can be readily separated from the endogenous protected fragment. This method is generally applicable to any riboprobe that has a T3 and T7 RNA polymerase site and allows any externally added riboprobe use for assessing endogenous gene expression to be used as the external spike control.  相似文献   

18.
The interaction of ApU, Aps4U, Aps4Up, ApAps4Up and Gps4U with RNase A was studied by CD difference spectroscopy. The use of 4-thiouridine (s4U) containing oligonucleotides enables to distinguish between the interaction of the different components of the ligand with the enzyme. The mode of binding of the oligonucleotides to the enzyme is described. From this mode of binding it is explained why Aps4U, for example, inhibits RNase A, while s4UpA serves as a substrate.  相似文献   

19.
Ribonuclease S (RNase-S) is a complex that consists of two proteolytic fragments of bovine pancreatic ribonuclease A (RNase-A): the S-peptide (residues 1-20) and S-protein (residues 21-124). We have refined the crystal structures of three RNase-S complexes. The first two contain the full-length 20-residue S-peptide and were studied at pHs of 4.75 and 5.5. The third one consists of a truncated form of S-peptide (residues 1-15) and was studied at pH 4.75 as the reference structure for a series of mutant peptide complexes to be reported separately. Excluding residues 16-23 which are either missing (in the S15 complex) or disordered (in both S20 complexes), all three structures refined at 1.6-A resolution are identical within the estimated errors in the coordinates (0.048 A for the backbone atoms). The R-values, residual error, range from 17.4% to 18.6%. The final model of S20, pH 4.75, includes 1 sulfate and 84 water molecules. The side chains of 11 residues were modeled in two discrete conformations. The final structures were independent of the particular RNase-A or RNase-S used as a starting model. An extensive comparison with refined crystal structures of RNase-A reveals that the core of the molecule which is held together with extensive hydrogen bonds is in identical pattern in all cases. However, the loop regions vary from one structure to another and are often characterized by high B-factors. The pattern of thermal parameters appears to be dependent on crystal packing and correlates well with the accessibility calculated in the crystal. Gln60 is a conserved residue in all sequences known to date for this class of ribonucleases. However, it is the only residue that is clearly defined in an unfavorable position (phi = -100 degrees, psi = -130 degrees) on the Ramachandran plot. The origin of the substantial differences between RNase-A and RNase-S in stability to both acid and temperature denaturation and in susceptibility to proteolysis at neutral pH is not obvious in our visual comparison of these two structures.  相似文献   

20.
Analyzing the pattern of oligonucleotide formation induced by HP-RNase cleavage shows that the enzyme does not act randomly and follows a more endonucleolytic pattern when compared to RNase A. The enzyme prefers the binding and cleavage of longer substrate molecules, especially when the phosphodiester bond that is broken is 8-11 nucleotides away from at least one of the ends of the substrate molecule. This more endonucleolytic pattern is more appropriate for an enzyme with a regulatory role. Deleting two positive charges on the N-terminus (Arg4 and Lys6) modifies this pattern of external/internal phosphodiester bond cleavage preference, and produces a more exonucleolytic enzyme. These residues may reinforce the strength of a non-catalytic secondary phosphate binding (p2) or, alternatively, constitute a new non-catalytic phosphate binding subsite (p3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号