首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blockade of the CD40-CD154 pathway can inhibit CD4(+) T cell activation but is unable to prevent immune responses mediated by CD8(+) T cells. However, even in the absence of CD8(+) T cells, inhibition of the CD40-CD154 pathway is insufficient to prevent the development of transplant arteriosclerosis. This study investigated the mechanisms of transplant arteriosclerosis in the absence of the CD40 pathway. C57BL/6 CD40(-/-) (H2(b)) recipients were transplanted with MHC-mismatched BALB/c (H2(d)) aortas. Transplant arteriosclerosis was evident in both CD40(-/-) and CD40(+/-) mice (intimal proliferation was 59 +/- 5% for CD40(-/-) mice vs 58 +/- 4% for CD40(+/-) mice) in the presence or absence of CD8(+) T cells (intimal proliferation was 46 +/- 7% for CD40(-/-) anti-CD8-treated mice vs 50 +/- 10% for CD40(+/-) anti-CD8-treated mice), confirming that CD8(+) T cells are not essential effector cells for the development of this disease. In CD40(-/-) recipients depleted of CD8(+) T cells, the number of eosinophils infiltrating the graft was markedly increased (109 +/- 24 eosinophils/grid for CD40(-/-) anti-CD8-treated mice vs 28 +/- 7 for CD40(+/-) anti-CD8-treated mice). The increased presence of eosinophils correlated with augmented intragraft production of IL-4. To test the hypothesis that IL-4 was responsible for the intimal proliferation, CD8 T cell-depleted CD40(-/-) recipients were treated with anti-IL-4 mAb. This resulted in significantly reduced eosinophil infiltration into the graft (12 +/- 5 eosinophils/grid for CD40(-/-) anti-CD8(+), anti-IL-4-treated mice vs 109 +/- 24 for CD40(-/-) anti-CD8-treated mice), intragraft eotaxin, CCR3 mRNA production, and the level of intimal proliferation (18 +/- 5% for CD40(-/-) anti-CD8(+)-, anti-IL-4-treated mice vs 46 +/- 7% for CD40(-/-) anti-CD8-treated mice). In conclusion, elevated intragraft IL-4 production results in an eosinophil infiltrate and is an important mechanism for CD8(+) T cell-independent transplant arteriosclerosis in the absence of CD40-CD154 costimulation.  相似文献   

2.
Lupus is an Ab-mediated autoimmune disease. One of the potential contributors to the development of systemic lupus erythematosus is a defect in naturally occurring CD4(+)CD25(+) regulatory T cells. Thus, the generation of inducible regulatory T cells that can control autoantibody responses is a potential avenue for the treatment of systemic lupus erythematosus. We have found that nasal administration of anti-CD3 mAb attenuated lupus development as well as arrested ongoing lupus in two strains of lupus-prone mice. Nasal anti-CD3 induced a CD4(+)CD25(-)latency-associated peptide (LAP)(+) regulatory T cell that secreted high levels of IL-10 and suppressed disease in vivo via IL-10- and TFG-beta-dependent mechanisms. Disease suppression also occurred following adoptive transfer of CD4(+)CD25(-)LAP(+) regulatory T cells from nasal anti-CD3-treated animals to lupus-prone mice. Animals treated with nasal anti-CD3 had less glomerulonephritis and diminished levels of autoantibodies as measured by both ELISA and autoantigen microarrays. Nasal anti-CD3 affected the function of CD4(+)ICOS(+)CXCR5(+) follicular helper T cells that are required for autoantibody production. CD4(+)ICOS(+)CXCR5(+) follicular helper T cells express high levels of IL-17 and IL-21 and these cytokines were down-regulated by nasal anti-CD3. Our results demonstrate that nasal anti-CD3 induces CD4(+)CD25(-)LAP(+) regulatory T cells that suppress lupus in mice and that it is associated with down-regulation of T cell help for autoantibody production.  相似文献   

3.
Mechanism of tumor rejection in anti-CD3 monoclonal antibody-treated mice   总被引:4,自引:0,他引:4  
The present study was undertaken to determine the mechanism of tumor rejection in mice treated with low dose anti-CD3 mAb. It was found that treated mice developed nonrestricted antitumor cytolytic spleen cells of the Thy-1+, asialo GM-1+, CD4-, CD8- phenotype. Although these cells might play a role in immunopotentiating some immune responses, in vivo depletion studies using anti-asialo GM-1 mAb demonstrated that these cells were not involved in the rejection of the progressor tumor, 1591-PRO4L, by anti-CD3 mAb-treated mice. Mice treated with anti-CD3 did develop lasting tumor specific immunity as demonstrated by their ability to reject PRO4L on tumor rechallenge while being unable to reject an unrelated UV-induced tumor. The specificity of this memory implicated T cells in the response to PRO4L in anti-CD3-treated mice. Using in vivo T cell subset depletion of anti-CD3-treated animals, it was shown that both CD4+ and CD8+ T cells are required for anti-CD3-induced tumor rejection. The CD4+ cells provide helper function and are only required in the early rejection period, whereas CD8+ cells are required throughout the immune response. In fact, examination of rejecting tumors from treated animals revealed the presence of tumor-specific CD8+ cytolytic T cells capable of cytolysis immediately after removal from the rejecting PRO4L tumor. Thus, in vivo treatment with anti-CD3 mAb likely results in the pan-stimulation of the entire T cell population, which enhances the generation of specific CD8+ T cells, which then eliminate the tumor.  相似文献   

4.
Blockade of costimulatory signals is a promising therapeutic target to prevent allograft rejection. In this study, we sought to characterize to what extent CTLA-4 engagement contributes to the development of transplantation tolerance under the cover of CD40/CD40L and CD28/CD86 blockade. In vitro, we found that inhibition of the primary alloresponse and induction of alloantigen hyporesponsiveness by costimulation blockade was abrogated by anti-CTLA-4 mAb. In addition, regulatory CD4(+)CD25(+) T cells (T(REG)) were confirmed to play a critical role in the induction of hyporesponsiveness by anti-CD40L and anti-CD86 mAb. Our data indicated that CTLA-4 engagement is not required for activation or suppressor function of T(REG). Instead, in the absence of either CTLA-4 signaling or T(REG), CD8(+) T cell division was enhanced, whereas the inhibition of CD4(+) T cell division by costimulation blockade remained largely unaffected. In vivo, the administration of additional anti-CTLA-4 mAb abrogated anti-CD40L- and anti-CD86 mAb-induced cardiac allograft survival. Correspondingly, rejection was accompanied by enhanced allograft infiltration of CD8(+) cells. We conclude that CTLA-4 signaling and T(REG) independently cooperate in the inhibition of CD8(+) T cell expansion under costimulation blockade.  相似文献   

5.
Induction of peripheral T cell anergy associated with stimulation through the TCR complex in vivo has been described in mice using chemically modified APC, staphylococcal enterotoxin B, and intact anti-CD3 mAb. In the latter two models, T cell proliferation, IL-2R expression, and lymphokine production have been demonstrated before subsequent induction of hyporesponsiveness, whereas in the former model, these events have not been observed. To further investigate the relationship between mitogenicity and induction of peripheral hyporesponsiveness, mice were treated with either mitogenic intact anti-CD3 mAb or nonmitogenic F(ab')2 fragments of anti-CD3 mAb. T cells from F(ab')2-treated mice demonstrated a selective decrease in helper functions, with minimal effect on CTL function. Specifically, a marked reduction in ability of Th cells to secrete IL-2 when challenged in vitro with mitogen or alloantigen was observed, which persisted for at least 2 mo after mAb administration and which was independent of T cell depletion. Proliferative function was decreased in CD4+ T cells and could not be fully restored with addition of exogenous IL-2. A helper defect was also evident in vivo, in that F(ab')2-treated mice were deficient in their ability to reject MHC-disparate skin grafts, and in vivo administration of IL-2 reconstituted their ability to reject skin grafts normally. In contrast, T cells from mice treated with intact mAb demonstrated a significant decrease in both CTL and helper functions. A long term reduction in TCR expression on CD4+ cells from F(ab')2-treated mice, and on both CD4+ and CD8+ cells from intact mAb-treated mice was observed. These findings demonstrate that peripheral T cell hyporesponsiveness can be induced in vivo by binding an identical epitope on the TCR complex in the presence or absence of initial proliferation, lymphokine secretion, or IL-2R expression, and that binding to the same epitope can result in varying long term effects on T cell function.  相似文献   

6.
Activation-induced cell death (AICD) plays a key role in the homeostasis of the immune system. Autoreactive T cells are eliminated through AICD both from the thymus and periphery. In this study, we show that NOD peripheral T cells, especially CD8(+) T cells, display a decreased susceptibility to anti-CD3-induced AICD in vivo compared with T cells from diabetes-resistant B6, nonobese diabetes-resistant, and NOD.B6Idd4 mice. The susceptibility of NOD CD8(+) T cells to AICD varies in an age- and dose-dependent manner upon stimulation in vivo with either a mitogenic or nonmitogenic anti-CD3. NOD T cells preactivated by anti-CD3 in vivo are less susceptible than B6 T cells to TCR-induced AICD. Treatment of NOD mice with a mitogenic anti-CD3 depletes CD4(+)CD25(-)CD62L(+) but not CD4(+)CD25(+)CD62L(+) T cells, thereby resulting in an increase of the latter subset in the spleen. Treatment with a nonmitogenic anti-CD3 mAb delays the onset of T1D in 8.3 TCR transgenic NOD mice. These results demonstrate that the capacity of anti-CD3 to protect NOD mice from T1D correlates with its ability to perturb T cell homeostasis by inducing CD8(+) T cell AICD and increasing the number of CD4(+)CD25(+)CD62L(+) T cells in the periphery.  相似文献   

7.
Role of the passive apoptotic pathway in graft-versus-host disease   总被引:1,自引:0,他引:1  
Donor T cells have been shown to undergo apoptosis during graft-vs-host disease (GVHD). Although active apoptosis mediated through Fas/Fas ligand interactions has been implicated in GVHD, little is known about the role of the passive apoptotic pathway. To examine this question, we compared the ability of normal donor T cells and T cells overexpressing the antiapoptotic protein, Bcl-x(L), to mediate alloreactive responses in vitro and lethal GVHD in vivo. In standard MLCs, T cells that overexpressed Bcl-x(L) had significantly higher proliferative responses but no difference in cytokine phenotype. Overexpression of Bcl-x(L) prolonged survival of both resting and alloactivated CD4(+) and CD8(+) T cells as assessed by quantitative flow cytometry, accounting for the higher proliferative responses. Analysis of engraftment in murine transplantation experiments demonstrated an increase in donor T cell chimerism in animals transplanted with Bcl-x(L) T cells, suggesting that overexpression of Bcl-x(L) prolonged T cell survival in vivo as well. Notably, transplantation of Bcl-x(L) T cells into nonirradiated F(1) recipients also significantly exacerbated GVHD as assessed by mortality and pathological damage in the gastrointestinal tract. However, when mice were irradiated no difference in GVHD mortality was observed between animals transplanted with wild-type and Bcl-x(L) T cells. These data demonstrate that the passive apoptotic pathway plays a role in the homeostatic survival of transplanted donor T cells. Moreover, the susceptibility of donor T cells to undergo passive apoptosis is a significant factor in determining GVHD severity under noninflammatory but not inflammatory conditions.  相似文献   

8.
We have previously shown that pretransplant donor lymphocyte infusion (DLI) together with transient depletion of CD4(+) T cells could induce permanent rat-to-mouse heart graft survival, whereas depleting CD4(+) T cells alone failed to do so. In this study, we investigated the mechanism leading to long-term xenograft survival. We found that peripheral CD4(+) T cells from DLI/anti-CD4-treated mice could mount rat heart graft rejection after adoptive transfer into B6 CD4(-/-) mice. Infusing donor-Ag-loaded mature dendritic cells (DCs) could break long-term cardiac xenograft survival in DLI/anti-CD4-treated mice. Interestingly, when the number and phenotype of graft-infiltrating cells were compared between anti-CD4- and DLI/anti-CD4-treated groups, we observed a significant increase in both the number and suppressive activity of alphabeta-TCR(+)CD3(+)CD4(-)CD8(-) double negative regulatory T cells and decrease in the numbers of CD4(+) and CD8(+) T cells in the xenografts of DLI/anti-CD4-treated mice. Moreover, there was a significant reduction in MHC class II-high DCs within the xenografts of DLI/anti-CD4-treated recipients. DCs isolated from the xenografts of anti-CD4- but not DLI/anti-CD4-treated recipients could stimulate CD4(+) T cell proliferation. Our data indicate that functional anti-donor T cells are present in the secondary lymphoid organs of the mice that permanently accepted cardiac xenografts. Their failure to reject xenografts is associated with an increase in double negative regulatory T cells as well as a reduction in Ag stimulation by DCs found within grafts. These findings suggest that local regulatory mechanisms need to be taken into account to control anti-xenograft T cell responses.  相似文献   

9.
CD4(+)CD25(+) regulatory T (Treg) cells naturally occur in mice and humans, and similar Treg cells can be induced in vivo and in vitro. However, the molecular mechanisms that mediate the generation of these Treg cell populations remain unknown. We previously described anti-4C8 mAbs that inhibit the postadhesive transendothelial migration of T cells through human endothelial cell monolayers. We demonstrate in this work that Treg cells are induced by costimulation of CD4(+) T cells with anti-CD3 plus anti-4C8. The costimulation induced full activation of CD4(+) T cells with high levels of IL-2 production and cellular expansion that were comparable to those obtained on costimulation by CD28. However, upon restimulation, 4C8-costimulated cells produced high levels of IL-10 but no IL-2 or IL-4, and maintained high expression levels of CD25 and intracellular CD152, as compared to CD28-costimulated cells. The former cells showed hyporesponsiveness to anti-CD3 stimulation and suppressed the activation of bystander T cells depending on cell contact but not IL-10 or TGF-beta. The suppressor cells developed from CD4(+)CD25(-)CD45RO(+) cells. The results suggest that 4C8 costimulation induces the generation of Treg cells that share phenotypic and functional features with CD4(+)CD25(+) T cells, and that CD25(-) memory T cells may differentiate into certain Treg cell subsets in the periphery.  相似文献   

10.
CD28 is well characterized as a costimulatory molecule in T cell activation. Recent evidences indicate that TNFR superfamily members, including glucocorticoid-induced TNFR-related protein (GITR), act as costimulatory molecules. In this study, the relationship between GITR and CD28 has been investigated in murine CD8(+) T cells. When suboptimal doses of anti-CD3 Ab were used, the absence of GITR lowered CD28-induced activation in these cells whereas the lack of CD28 did not affect the response of CD8(+) T cells to GITR costimulus. In fact, costimulation of CD28 in anti-CD3-activated GITR(-/-) CD8(+) T cells resulted in an impaired increase of proliferation, impaired protection from apoptosis, and an impaired rise of activation molecules such as IL-2R, IL-2, and IFN-gamma. Most notably, CD28-costimulated GITR(-/-) CD8(+) T cells revealed lower NF-kappaB activation. As a consequence, up-regulation of Bcl-x(L), one of the major target proteins of CD28-dependent NF-kappaB activation, was defective in costimulated GITR(-/-) CD8(+) T cells. What contributed to the response to CD28 ligation in CD8(+) T cells was the early up-regulation of GITR ligand on the same cells, the effect of which was blocked by the addition of a recombinant GITR-Fc protein. Our results indicate that GITR influences CD8(+) T cell response to CD28 costimulation, lowering the threshold of CD8(+) T cell activation.  相似文献   

11.
12.
The antiapoptotic protein Bcl-x(L) is induced in activated T lymphocytes upon costimulation through CD28, 4-1BB, and OX40. Bcl-x(L) is also highly enriched in memory T lymphocytes. Based on this body of evidence, it was thought that Bcl-x(L) plays an essential role in the generation of effector and memory T lymphocytes. We report that mice with a conditional deletion of Bcl-x in T lymphocytes develop a normal CD8(+) T cell response to Listeria monocytogenes infection. Furthermore, Bcl-x conditional knockout mice exhibit normal T-dependent humoral immune responses. These results indicate that Bcl-x is dispensable for the generation of effector and memory T lymphocytes and suggest that costimulation of T lymphocytes promotes their survival through a Bcl-x(L) independent mechanism.  相似文献   

13.
The primary effector cells of contact hypersensitivity (CHS) responses to dintrofluorobenzene (DNFB) are IFN-gamma-producing CD8(+) T cells, whereas CD4(+) T cells regulate the magnitude and duration of the response. The requirement for CD40-CD154 engagement during CD8(+) and CD4(+) T cell priming by hapten-presenting Langerhans cells (hpLC) is undefined and was tested in the current study. Similar CHS responses to DNFB were elicited in wild-type and CD154(-/-) animals. DNFB sensitization of CD154(-/-) mice primed IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells. However, anti-CD154 mAb MR1 given during hapten sensitization inhibited hapten-specific CD8(+), but not CD4(+), T cell development and the CHS response to challenge. F(ab')(2) of MR1 failed to inhibit CD8(+) T cell development and the CHS response suggesting that the mechanism of inhibition is distinct from that of CD40-CD154 blockade. Furthermore, anti-CD154 mAb did not inhibit CD8(+) T cell development and CHS responses in mice depleted of CD4(+) T cells or in CD4(-/-) mice. During in vitro proliferation assays, hpLC from mice treated with anti-CD154 mAb during DNFB sensitization were less stimulatory for hapten-primed T cells than hpLC from either control mice or mice depleted of CD4(+) T cells before anti-CD154 mAb administration. These results demonstrate that development of IFN-gamma-producing CD8(+) T cells and the CHS response are not dependent on CD40-CD154 interactions. This study proposes a novel mechanism of anti-CD154 mAb-mediated inhibition of CD8(+) T cell development where anti-CD154 mAb acts indirectly through CD4(+) T cells to impair the ability of hpLC to prime CD8(+) T cells.  相似文献   

14.
The purpose of this study was to investigate the effects of chronically inhaled particulate matter <2.5 μm (PM(2.5)) on inflammatory cell populations in the lung and systemic circulation. A prominent component of air pollution exposure is a systemic inflammatory response that may exaggerate chronic diseases such as atherosclerosis and insulin resistance. T cell response was measured in wild-type C57B/L6, Foxp3-green fluorescent protein (GFP) "knockin," and chemokine receptor 3 knockout (CXCR3(-/-)) mice following 24-28 wk of PM(2.5) or filtered air. Chronic PM(2.5) exposure resulted in increased CXCR3-expressing CD4(+) and CD8(+) T cells in the lungs, spleen, and blood with elevation in CD11c(+) macrophages in the lung and oxidized derivatives of 1-palmitoyl-2-arachidonyl-sn-glycero-3-phosphorylcholine in wild-type mice. CXCR3 deficiency decreased T cells in the lung. GFP(+) regulatory T cells increased with PM(2.5) exposure in the spleen and blood of Foxp3-GFP mice but were present at very low levels in the lung irrespective of PM(2.5) exposure. Mixed lymphocyte cultures using primary, PM(2.5)-treated macrophages demonstrated enhanced T cell proliferation. Our experiments indicate that PM(2.5) potentiates a proinflammatory Th1 response involving increased homing of CXCR3(+) T effector cells to the lung and modulation of systemic T cell populations.  相似文献   

15.
Experimental systemic lupus erythematosus (SLE) can be induced in mice following immunization with an anti-DNA mAb expressing a major Id, 16/6Id. Treatment with a peptide, designated human CDR1 (hCDR1; Edratide), that is based on the sequence of CDR1 of the 16/6Id ameliorated disease manifestations. In the present study, we investigated the roles of apoptosis and related molecules in BALB/c mice with induced experimental SLE following treatment with hCDR1. A higher state of activation and increased rate of apoptosis were found in lymphocytes of SLE-afflicted mice as compared with healthy controls. The latter effects were associated with up-regulated caspase-8 and caspase-3, and down-regulated Bcl-x(L). The ameliorative effects of hCDR1 were associated with down-regulation of caspase-8 and caspase-3, up-regulation of Bcl-x(L), and a reduced rate of apoptosis. Treatment of diseased mice with an apoptosis-reducing compound that inhibited caspases down-regulated the secretion of the pathogenic cytokine IFN-gamma and lowered the intensity of glomerular immune complex deposits and the levels of proteinuria. Furthermore, coincubation of Bcl-x(L) inhibitors with hCDR1-treated cells abrogated the ability of hCDR1 to reduce the activation state of lymphocytes and to down-regulate the secretion of IL-10 and IFN-gamma. Moreover, the Bcl-x(L)-expressing CD4(+)CD25(+) cells from hCDR1-treated mice induced the expression of Bcl-x(L) in CFSE-labeled CD4(+)CD25(-) cells of the SLE-afflicted mice. Thus, the reduction of apoptosis and the up-regulation of Bcl-x(L), which plays an apparent role in tolerance induction, contribute to at least part of the beneficial effects of hCDR1 on lupus manifestations.  相似文献   

16.
In vivo priming of CD8(+) T lymphocytes against exogenously processed model Ags requires CD4(+) T cell help, specifically interactions between CD40 ligand (CD40L) expressed by activated CD4(+) T cells and CD40, which is present on professional APC such as dendritic cells (DCs). To address this issue in the context of bacterial infection, we examined CD40L-CD40 interactions in CD8(+) T cell priming against an exogenously processed, nonsecreted bacterial Ag. CD40L interactions were blocked by in vivo treatment with anti-CD40L mAb MR-1, which inhibited germinal center formation and CD8(+) T cell cross-priming against an exogenous model Ag, OVA. In contrast, MR-1 treatment did not interfere with CD8(+) T cell priming against a nonsecreted or secreted recombinant Ag expressed by Listeria monocytogenes. Memory and secondary responses of CD8(+) T cells against nonsecreted and secreted bacterial Ags were also largely unimpaired by transient MR-1 treatment. When MR-1-treated mice were concurrently immunized with L. monocytogenes and OVA-loaded splenocytes, cross-priming of OVA-specific naive CD8(+) T cells occurred. No significant decline in cross-priming against OVA was measured when either TNF or IFN-gamma was neutralized in L. monocytogenes-infected animals, demonstrating that multiple signals exist to overcome CD40L blockade of CD8(+) T cell cross-priming during bacterial infection. These data support a model in which DCs can be stimulated in vivo through signals other than CD40, becoming APC that can effectively stimulate CD8(+) T cell responses against exogenous Ags during infection.  相似文献   

17.
A CD30 ligand (CD30L, CD153) is a type II membrane-associated glycoprotein belonging to the TNF family. To illustrate the potential role of CD30L in CD4(+) Th1 cell responses, we investigated the fate of Ag-specific CD4(+) T cells in CD30L-deficient (CD30L(-/-)) mice after Mycobacterium bovis bacillus Calmette-Guérin (BCG) infection. The number of bacteria was significantly higher in organs of CD30L(-/-) mice than in wild-type (WT) mice 4 wk postinfection. The numbers of purified protein derivative- or Ag85B-specific-IFN-gamma-producing-CD4(+) T cells in spleen, lung, or peritoneal exudate cells were significantly fewer in CD30L(-/-) mice than in WT mice. During the infection, CD30L was expressed mainly by CD44(+)CD3(+)CD4(+) T cells but not by CD3(+)CD8(+) T cells, B cells, dendritic cells, or macrophages. Costimulation with agonistic anti-CD30 mAb or coculturing with CD30L-transfected P815 cells restored IFN-gamma production by CD4(+) T cells from BCG-infected CD30L(-/-) mice. Coculturing with CD30L(+/+)CD4(+) T cells from BCG-infected WT mice also restored the number of IFN-gamma(+)CD30L(-/-)CD4(+) T cells. When transferred into the CD30L(+/+) mice, Ag-specific donor CD30L(-/-) CD4(+) T cells capable of producing IFN-gamma were restored to the compared level seen in CD30L(+/+) CD4(+) T cells on day 10 after BCG infection. When naive CD30L(+/+) T cells were transferred into CD30L(-/-) mice, IFN-gamma-producing-CD4(+) Th1 cells of donor origin were normally generated following BCG infection, and IFN-gamma-producing-CD30L(-/-)CD4(+) Th1 cells of host origin were partly restored. These results suggest that CD30L/CD30 signaling executed by CD30(+) T-CD30L(+) T cell interaction partly play a critical role in augmentation of Th1 response capable of producing IFN-gamma against BCG infection.  相似文献   

18.
We have recently shown that intradermal coadministration of DNA encoding Ag with DNA encoding inhibitors of apoptosis, including Bcl-x(L), prolongs dendritic cell (DC) life and thereby enhances the potency of DNA vaccines in vivo. We have also demonstrated that DNA vaccines targeting Ag to subcellular compartments, using proteins such as Mycobacterium tuberculosis heat shock protein 70, calreticulin, or the sorting signal of the lysosome-associated membrane protein type 1 (LAMP-1), enhanced DNA vaccine potency. In this study, we reasoned that the combination of a strategy to prolong DC life with intracellular targeting strategies might produce a more effective DNA vaccine against human papillomavirus E7. We showed that coadministration of DNA encoding Bcl-x(L) with DNA encoding E7/heat shock protein 70, calreticulin/E7, or Sig/E7/LAMP-1 resulted in further enhancement of the E7-specific CD8(+) T cell response for all three constructs. Of these strategies, mice vaccinated with Sig/E7/LAMP-1 DNA mixed with Bcl-x(L) DNA showed the greatest increase in E7-specific CD8(+) T cells ( approximately 13-fold increase). This combination of strategies resulted in increased CD8(+) T cell functional avidity, an increased E7-specific CD4(+) Th1 cell response, enhanced tumor treatment ability, and stronger long-term tumor protection when compared with mice vaccinated without Bcl-x(L) DNA. Therefore, DNA vaccines that combine strategies to enhance intracellular Ag processing and prolong DC life have potential clinical implications for control of viral infection and neoplasia.  相似文献   

19.
In malignancies where no universally expressed dominant Ag exists, the use of tumor cell-based vaccines has been proposed. We have modified a mouse neuroblastoma cell line to express either CD80 (B7.1), CD137L (4-1BBL), or both receptors on the tumor cell surface. Vaccines expressing both induce a strong T cell response that is unique in that among responding CD8 T cells, a T effector memory cell (T(EM)) response arises in which a large number of the T(EM) express the alpha-chain of VLA-2, CD49b. We demonstrate using both in vitro and in vivo assays that the CD49b(+) CD8 T cell population is a far more potent antitumor effector cell population than nonfractionated CD8 or CD49b(-) CD8 T cells and that CD49b on vaccine-induced CD8 T cells mediates invasion of a collagen matrix. In in vivo rechallenge studies, CD49b(+) T cells no longer expanded, indicating that CD49b T(EM) expansion is restricted to the initial response to vaccine. To demonstrate a mechanistic link between the expression of costimulatory molecules on the vaccine and CD49b on responding T cells, we stimulated naive T cells in vitro with artificial APC expressing different combinations of anti-CD3, anti-CD28, and CD137L. Although some mRNA encoding CD49b was induced by combining anti-CD3 with anti-CD28 or CD137L, the highest level was induced when all three signals were present. This indicates that CD49b expression results from additive costimulation and that the level of CD49b message serves as an indicator of the effectiveness of T cell activation by a cell-based vaccine.  相似文献   

20.
Memory CD8(+) T cell responses are thought to be more effective as a result of both a higher frequency of Ag-specific clones and more rapid execution of effector functions such as granule-mediated lysis. Murine models have indicated that memory CD8(+) T cells exhibit constitutive expression of perforin and can lyse targets directly ex vivo. However, the regulated expression of cytotoxic granules in human memory CD8(+) T cell subsets has been underexplored. Using intracellular flow cytometry, we observed that only a minor fraction of CD45RA(-)CD8(+) T cells, or of CD8(+) T cells reactive to EBV-HLA2 tetramer, expressed intracellular granzyme B (GrB). Induction of GrB-containing cytotoxic granules in both CD45RA(+) and CD45RA(-) cells was achieved by stimulation with anti-CD3/anti-CD28 mAb-coated beads, required at least 3 days, occurred after several rounds of cell division, and required cell cycle progression. The strongest GrB induction was seen in the CCR7(+) subpopulations, with poorest proliferation being observed in the CD45RA(-)CCR7(-) effector-memory pool. Our results indicate that, as with naive T cells, induction of cytotoxic granules in human Ag-experienced CD8(+) T cells requires time and cell division, arguing that the main numerical advantage of a memory T cell pool is a larger frequency of CTL precursors. The fact that granule induction can be achieved through TCR and CD28 ligation has implications for restoring lytic effector function in the context of antitumor immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号