首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary The nitrogen fixation ability ofRhodopseudomonas capsulatus (a member of the photosynthetic bacteria) has been investigated. This organism can fix N2 most effectively under illuminated anaerobic conditions. However, in mixed culture in symbiotic association with heterotrophic bacteria, this microorganism using pyruvic acid excreted by the heterotrophs is capable of fixing nitrogen even under an apparent aerobic environment. It has been demonstrated that some correlation exists between the growth of photosynthetic bacteria and the reproduction of the rice plant. Compared to the mineral fertilizer, application of photosynthetic bacteria at the reproductive stage of rice plants increased the yield of grain. This was confirmed by the fact that the root system of rice is capable of absorbing amino acids and nucleic acids excreted by photosynthetic bacteria. Uracil and proline have the most influence on rice reproduction. This is also true for tomato plants. Many toxic molecules such as hydrogen sulfide, amines, etc. are found in soil. They are metabolized by photosynthetic bacteria, which contributes to the detoxication of soil. Such findings were extended to the purification of polluted waste waters from industry and domestic sources,etc. It can be concluded that photosynthetic bacteria contribute very significantly to soil fertility and improvement of the plant growth condition.  相似文献   

2.
Cell envelopes were prepared from freeze-dried cells of 8 strains of budding bacteria belonging to the Pirella/Planctomyces group. Treatment with 10% sodium dodecylsulfate (SDS) (30 min, 100°C) allowed the isolation of stable cell sacculi which still maintained the original cell shape. The chemical analysis showed, as the main component, protein which was unusually rich in proline and cystine. Except for Planctomyces maris IFAM 1317 (where this protein comprised 62.6% of the total envelope dry weight) the corresponding values for the other strains varied from 75 to 82%. Amino sugars and neutral sugars were present only in small amounts and uronic acids were not found. The ash content varied from 5 to 10% of the dry weight, except for IFAM 1317 which had 19% ash. The high content of cystine indicated a high degree of crosslinking of the cell envelopes through disulfide bonds. Our data show that bacteria of the Pirella/Planctomyces group possess a similar cell wall composition.  相似文献   

3.
Lipids and pigments of photosynthetic bacteria, Rhodospirillum rubrum and Rhodopseudomonas capsulatus were examined. Common and prominent lipids in both bacteria were phosphatidyl ethanolamine and phosphatidyl glycerol. Rhodospirillum rubrum contained a special lipid containing ornithine. Their component fatty acids were straight chain saturated and monoenoic acids. No glycolipids were found in both bacteria. Ubiquinone-50 was detected in large amounts in both bacteria, and a new quinone and rhodoquinone were found in Rhodospirillum rubrum. The major carotenoids were spirilloxanthin, lycopene, and probably rhodopin. The results were compared with those of spinach and Anacystis, and discussed.  相似文献   

4.
The marine photosynthetic bacterium Rhodovulum sulfidophilum produces extracellular nucleic acids involved in its flocculation. Previously, we showed that the RNA fraction of these extracellular nucleic acids released into the culture medium contains mainly non-aminoacylated fully mature-sized tRNAs and fragments of 16S and 23S rRNAs. Here, we report the characterization of extracellular DNA itself and its production during cultivation. No differences were detected in nucleotide sequence between the intracellular DNA and extracellular soluble DNA on Southern blotting. Whole intracellular DNA seemed to be released from the cell. The bacterial floc was degraded by deoxyribonuclease or ribonuclease treatment, indicating that at least the extracellular DNA and RNAs in the floc are involved in the maintenance of the floc. When cultivated in nutritionally rich medium, the bacteria formed small flocs and produced large amounts of extracellular DNA, which were solubilized in the medium. In nutritionally poor medium, however, huge flocs of cells appeared and almost no extracellular soluble DNA was observed in the medium. As the floc was degraded by deoxyribonuclease treatment, it seems likely that the extracellular soluble DNA observed in the rich medium may be incorporated into the large floc and play a role in floc maintenance in poor medium. Addition of an inhibitor of quorum sensing, α-cyclodextrin, inhibited huge floc maintenance in the nutritionally poor medium. In the presence of α-cyclodextrin, the floc was rapidly degraded and extracellular soluble DNA production increased.  相似文献   

5.
Sodium dodecyl sulfate-polyacrylamide gel protein electrophoresis (SDS-PAGE) was carried out using different bacterial strains of the photosynthetic sulfur bacteria Chlorobium, Thiocapsa, Thiocystis, and Chromatium cultured in the laboratory, and the natural blooms in two karstic lakes (Lake Cisó and Lake Vilar, NE Spain) where planktonic photosynthetic bacteria (purple and green sulfur bacteria) massively developed accounting for most of the microbial biomass. Several extraction, solubilization, and electrophoresis methods were tested to develop an optimal protocol for the best resolution of the SDS-PAGE. Protein composition from different water depths and at different times of the year was visualized within a molecular mass range between 100 and 15 kDa yielding up to 20 different protein bands. Protein banding patterns were reproducible and changed in time and with depth in agreement with changes in photosynthetic bacteria composition. When a taxonomically stable community was followed in time, differences were observed in the intensity but not in the composition of the SDS-PAGE banding pattern. Three environmental variables directly related to the activity of sulfur bacteria (light, oxygen, and sulfide concentrations) had a significant effect on protein banding patterns and explained 33% of the variance. Changes in natural protein profiles of the bacterial blooms agreed with changes in species composition and in the in situ metabolic state of the populations.  相似文献   

6.
7.
The immunodominant antigen A, IsaA, of Staphylococcus aureus was found to include a putative soluble lytic transglycosylase domain in its C-terminal region. Since the presence of this distinctive domain suggested that the protein might participate in peptidoglycan turnover, as indicated in Gram-negative bacteria, its cellular location was investigated. The protein was found not only in the culture supernatant but also in the cell wall fraction. To estimate its physiological role for the bacterium, its cell surface distribution was studied by immunoelectron microscopy. Protein A-gold particles binding to the immune complex were mainly located on the septal region of the bacterial cell surface. These data suggested that IsaA might be involved in bacterial cell separation through a preferential interaction with peptidoglycan chain.  相似文献   

8.
Metabolic adaptation is a key feature for the virulence of pathogenic intracellular bacteria. Nevertheless, little is known about the pathways in adapting the bacterial metabolism to multiple carbon sources available from the host cell. To analyze the metabolic adaptation of the obligate intracellular human pathogen Chlamydia trachomatis, we labeled infected HeLa or Caco‐2 cells with 13C‐marked glucose, glutamine, malate or a mix of amino acids as tracers. Comparative GC‐MS‐based isotopologue analysis of protein‐derived amino acids from the host cell and the bacterial fraction showed that C. trachomatis efficiently imported amino acids from the host cell for protein biosynthesis. FT‐ICR‐MS analyses also demonstrated that label from exogenous 13C‐glucose was efficiently shuffled into chlamydial lipopolysaccharide probably via glucose 6‐phosphate of the host cell. Minor fractions of bacterial Ala, Asp, and Glu were made de novo probably using dicarboxylates from the citrate cycle of the host cell. Indeed, exogenous 13C‐malate was efficiently taken up by C. trachomatis and metabolized into fumarate and succinate when the bacteria were kept in axenic medium containing the malate tracer. Together, the data indicate co‐substrate usage of intracellular C. trachomatis in a stream‐lined bipartite metabolism with host cell‐supplied amino acids for protein biosynthesis, host cell‐provided glucose 6‐phosphate for cell wall biosynthesis, and, to some extent, one or more host cell‐derived dicarboxylates, e.g. malate, feeding the partial TCA cycle of the bacterium. The latter flux could also support the biosynthesis of meso‐2,6‐diaminopimelate required for the formation of chlamydial peptidoglycan.  相似文献   

9.
Nutritional studies on four different strains of Chloroflexus, a new genus of filamentous, photosynthetic bacteria are described. This organism appears to be related to several different procaryotic groups, and in particular to the green sulfur bacteria and blue-green algae. Unlike these autotrophs, however, Chloroflexus is nutritionally diverse, being able to grow aerobically as a light-independent heterotroph, and anaerobically as a photoautotroph or photoheterotroph. Numerous organic carbon sources including hexoses, amino acids, short chain fatty acids, organic acids, and some alcohols are utilized under various growth conditions. These results suggest that this organism may be among the most nutritionally versatile organisms known.  相似文献   

10.
具有优良抑菌特性乳酸菌的筛选鉴定及活性物质检测   总被引:1,自引:0,他引:1  
【背景】有益性乳酸菌在人体和动物体内分布极为广泛,是维持胃肠道菌群平衡、提高机体免疫力的主力军。近年来,为了解决禁用抗生素而导致动物发病率不断增高的问题,分析和研究乳酸菌及其所产活性物质的益生特性并开发新型饲料添加剂成为一个重要手段。【目的】本实验旨在从土壤中分离筛选出具有优良抑菌特性的乳酸菌,并对其所产活性物质的特性进行分析评价。【方法】采用溴甲酚紫平板法筛选并结合抑菌能力检测,得到2株具有优良抑菌特性的产酸菌株,分别命名为H-3和H-4。经形态学鉴定及16S rRNA基因序列测定后,对2株菌分别进行生长曲线和产酸量检测;通过排除酸处理、蛋白酶处理和热处理的方法分析2株菌所产抑菌物质的有效成分。【结果】H-3和H-4菌株经初步鉴定为乳酸片球菌(Pediococcus acidilactici),2株菌均具有良好的生长性能及产酸性能。菌株发酵上清液对大肠杆菌(Escherichia coli)、金黄色葡萄球菌(Staphylococcus aureus)、猪霍乱沙门氏菌(Salmonella choleraesuis)、福氏志贺氏菌(Shigella flexneri)均表现出明显的抑...  相似文献   

11.
Cryptococcus neoformans is rich in polysaccharides of the cell wall and capsule. Dectin‐2 recognizes high‐mannose polysaccharides and plays a central role in the immune response to fungal pathogens. Previously, we demonstrated Dectin‐2 was involved in the activation of dendritic cells upon stimulation with C. neoformans, suggesting the existence of a ligand recognized by Dectin‐2. In the present study, we examined the cell wall structures of C. neoformans contributing to the Dectin‐2‐mediated activation of immune cells. In a NFAT‐GFP reporter assay of the reported cells expressing Dectin‐2, the lysates, but not the whole yeast cells, of an acapsular strain of C. neoformans (Cap67) delivered Dectin‐2‐mediated signaling. This activity was detected in the supernatant of β‐glucanase‐treated Cap67 and more strongly in the semi‐purified polysaccharides of this supernatant using ConA‐affinity chromatography (ConA‐bound fraction), in which a large amount of saccharides, but not protein, were detected. Treatment of this supernatant with periodic acid and the addition of excessive mannose, but not glucose or galactose, strongly inhibited this activity. The ConA‐bound fraction of the β‐glucanase‐treated Cap67 supernatant was bound to Dectin‐2‐Fc fusion protein in a dose‐dependent manner and strongly induced the production of interleukin‐12p40 and tumour necrosis factor‐α by dendritic cells; this was abrogated under the Dectin‐2‐deficient condition. Finally, 98 kDa mannoprotein (MP98) derived from C. neoformans showed activation of the reporter cells expressing Dectin‐2. These results suggested that a ligand with mannose moieties may exist in the cell walls and play a critical role in the activation of dendritic cells during infection with C. neoformans.  相似文献   

12.
In plants, neutral lipids are frequently synthesized and stored in seed tissues, where the assembly of lipid droplets (LDs) coincides with the accumulation of triacylglycerols (TAGs). In addition, photosynthetic, vegetative cells can form cytosolic LDs and much less information is known about the makeup and biogenesis of these LDs. Here we focus on Chlamydomonas reinhardtii as a reference model for LDs in a photosynthetic cell, because in this unicellular green alga LD dynamics can be readily manipulated by nitrogen availability. Nitrogen deprivation leads to cellular quiescence during which cell divisions cease and TAGs accumulate. The major lipid droplet protein (MLDP) forms a proteinaceous coat surrounding mature LDs. Reducing the amount of MLDP affects LD size and number, TAG breakdown and timely progression out of cellular quiescence following nitrogen resupply. Depending on nitrogen availability, MLDP recruits different proteins to LDs, tubulins in particular. Conversely, depolymerization of microtubules drastically alters the association of MLDP with LDs. LDs also contain select chloroplast envelope membrane proteins hinting at an origin of LDs, at least in part, from chloroplast membranes. Moreover, LD surface lipids are rich in de novo synthesized fatty acids, and are mainly composed of galactolipids which are typical components of chloroplast membranes. The composition of the LD membrane is altered in the absence of MLDP. Collectively, our results suggest a mechanism for LD formation in C. reinhardtii involving chloroplast envelope membranes by which specific proteins are recruited to LDs and a specialized polar lipid monolayer surrounding the LD is formed.  相似文献   

13.
14.
Zhou QF  Luo XG  Ye L  Xi T 《Current microbiology》2007,54(5):366-370
Perinerin is a small antimicrobial peptide (AMP) isolated from an Asian marine clamworm, Perinereis aibuhitensis Grube. It shows marked activity in vitro against both Gram-negative and Gram-positive bacteria. To obtain it in large amounts, the coding sequence of perinerin was cloned into pET32a(+) vector and expression as a Trx fusion protein in Escherichia coli. The soluble fusion protein collected from the supernatant of the cell lyste was separated by Ni2+-chelating chromatography. The purified protein was then cleaved by Factor Xa protease to release mature perinerin. Final purification was achieved by ion-exchange chromatography. Recombinant perinerin exhibited a similar antimicrobial activity to the native perinerin. These works might provide a significant foundation for the following research on the action of mechanism of marine AMPs.  相似文献   

15.
We efficiently produced a small peptide by the host-vector system using Bacillus brevis as a host. DNA encoding the physiologically functional casoxin D, composed of seven amino acids, was ligated in tandem. An expression-secretion vector containing DNA, which codes for a fusion protein of epidermal growth factor-casoxin D pentamer, was constructed. B. brevis transformed with this plasmid produced about 0.5 g/liter of the fusion protein in the culture supernatant. The fusion protein was purified with ammonium sulfate fractionation from the supernatant and digested with two kinds of proteinases. A peptide well separated by high pressure liquid chromatography was identified as biologically active casoxin D.  相似文献   

16.
The diatom Conticribra weissflogii is a microalga with high nutrition value, rich in docosahexaenoic acids (DHA) and eicosapentaenoic acids (EPA). In order to study the effect of culture conditions on the changes of lipid compositions, the intact lipid structural profiles and fatty acids in C. weissflogii were monitored under static and aerated culture conditions. The results showed that, lipids identified in C. weissflogii were neutral lipid triacylglycerols (TAG), betaine lipid diacylglycerylcarboxy‐N‐hydroxymethyl‐choline (DGCC), phosphatidylcholine (PC) and four classes of photosynthetic glycerolipids. The profiles of lipid metabolites of C. weissflogii were different between two culture modes, with the following characteristics under aerated conditions: TAGs increased significantly, whereas the levels of sulfoquinovosyl diacylglycerol (SQDG), monogalactosyldiacylglycerol (MGDG), and DGCC decreased. Furthermore, higher contents of EPA‐rich TAG and EPA/DHA‐rich DGCC were detected at the end of stationary phase, while EPA/DHA‐rich PC, EPA‐rich MGDG and EPA‐rich digalactosyldiacylglycerol (DGDG) were obtained in the exponential phase under static conditions. Meanwhile, the contents of almost all classes of the essential fatty acids (EFAs)‐enriched lipids increased at onset of stationary phase under aerated conditions. Taken together, given that the high levels of EFAs are required for artificial rearing of marine organisms, aeration is critically important for increasing the production rate and the contents of EFA molecules and therefore increasing the nutritional value of the microalgae.  相似文献   

17.
The whey major component, whey acidic protein (WAP), has one or more WAP domains characterized by a four-disulfide core (4-DSC) structure. These kinds of proteins are involved in multiple functions, including proteinase inhibitor activity, antimicrobial activity, ATPase inhibitor activity, and regulatory function in cell proliferation. Recent research indicates that WAP domain-containing proteins play an important role in the innate immunity of crustaceans. In this study, a novel double WAP domain (DWD)-containing protein named Fc-DWD was found for the first time in Chinese white shrimp, Fenneropenaeus chinensis. The open reading frame of Fc-DWD encodes a protein of 117 amino acids, including a signal peptide of 16 amino acids and two WAP domains. The predicted molecular mass of the mature protein is 12.78 kDa with an estimated pI of 8.49. The first WAP domain, named WAP 1, composed of 49 amino acids locates in the amino-terminal of Fc-DWD, and the second WAP domain, named WAP 2, composed of 45 amino acids locates in the carboxy-terminal. Fc-DWD mRNA was upregulated in hemocytes, hepatopancreas, gills, and stomach of bacteria- and virus-challenged shrimp. Results of the binding assay showed that rFc-DWD could bind to both Gram-negative bacteria and Gram-positive bacteria. rWAP 1 could only bind to Gram-positive bacteria, but rWAP 2 could bind to both Gram-negative and positive bacteria. Moreover, rFc-DWD exhibited proteinase inhibitory activity against the secretory proteinase(s) from Bacillus subtilis and Pseudomonas aeruginosa. All of these findings suggest that Fc-DWD may play an important role in enabling the host defense to execute its proteinase inhibitory activity against pathogens.  相似文献   

18.
Proteins which are found in integral defatted sunflower flour (27% of protein in dry weight) allow us to produce a protein concentrate by means of extraction of proteins with a basic pH solution, followed by their precipitation with an acid pH solution. Once the suitable conditions for pH and temperature were fixed in order to carry out these processes, a solid proteic concentrate (71% of protein in dry weight) was obtained which was rich in glutamic and aspartic acids, with a liquid supernatant very rich in phosphorus and potassium, which might be used as an agricultural fertilizer.  相似文献   

19.
The phototrophic capacity of aerobic anoxygenic phototrophic bacteria endows them with a selective advantage over other heterotrophic bacteria in the oligotrophic ocean. Here, we reported the phototrophic features and proteome of an aerobic phototrophic bacterium Roseobacter denitrificans under starvation stress. The fluorescence induction and relaxation measurements suggested that the photosynthetic capacity in R. denitrificans was preserved but was lower than in the photoautotrophic bacterium Rhodobacter sphaeroides. The existence of light-harvesting complexes (LH1 and LH2) and the reaction center (RC) in the native membrane were demonstrated through atomic force microscopy image analysis as direct evidence of their phototrophy. The homology-based LH1–RC complex structure was proposed in which RC was the Rb. sphaeroides homolog structure surrounded by the LH1. Moreover, the protein expression profiles of cells in the stationary phase under heterotrophic and mixotrophic conditions show that light enhanced or activated some proteins such as carbon monoxide dehydrogenase and NifU to cope with the low levels of amino acids and carbon sources under starvation conditions.  相似文献   

20.
The present study investigates the extremophilic nature of bacteria present in thorium rich mine ore samples collected from Manavalakuruchi, Tamilnadu, India. Six different bacteria strains were isolated from these ore samples and screened for its resistance against varying pH, uranium and gamma radiation. Deinococcus radiodurans ATCC 13939 and Escherichia coli MTCC 1687 was used as positive and negative control respectively. Among the six different bacterial strains, MVK04 strain was found to resist higher pH, uranium concentration and gamma radiation. The organism was identified as Bacillus cereus based on biochemical, 16S rRNA and MALDI TOF fingerprinting studies. The interaction of uranium ions with MVK04 bacterial cell wall was investigated using high resolution transmission electron microscopy (HRTEM) and energy dispersive spectroscopy (EDS). The bacterial MVK04 was further investigated for the presence of surface layer protein (S-layer protein) on the bacterial cell wall. The S-layer protein was isolated, partially purified and self-assembled onto TEM copper grids and the self-assembled protein nanostructures were characterized using HRTEM. The presence of surface layer protein on bacterial cell wall may be the possible reason for its extremophilic characteristics and its escape from lethal effect of higher concentration of uranium, lower pH and increased gamma radiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号