首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The establishment of heart mesoderm during Xenopus development has been examined using an assay for heart differentiation in explants and explant combinations in culture. Previous studies using urodele embryos have shown that the heart mesoderm is induced by the prospective pharyngeal endoderm during neurula and postneurula stages. In this study, we find that the specification of heart mesoderm must begin well before the end of gastrulation in Xenopus embryos. Explants of prospective heart mesoderm isolated from mid- or late neurula stages were capable of heart formation in nearly 100% of cases, indicating that the specification of heart mesoderm is complete by midneurula stages. Moreover, inclusion of pharyngeal endoderm had no statistically significant effect upon either the frequency of heart formation or the timing of the initiation of heartbeat in explants of prospective heart mesoderm isolated after the end of gastrulation. When the superficial pharyngeal endoderm was removed at the beginning of gastrulation, experimental embryos formed hearts, as did explants of prospective heart mesoderm from such embryos. These results indicate that the inductive interactions responsible for the establishment of heart mesoderm occur prior to the end of gastrulation and do not require the participation of the superficial pharyngeal endoderm.  相似文献   

2.
Nodal and Nodal-related factors play fundamental roles in a number of developmental processes, including mesoderm and endoderm formation, patterning of the anterior neural plate, and determination of bilateral asymmetry in vertebrates. pitx2, a paired-like homeobox gene, has been proposed to act downstream of Nodal in the gene cascade providing left-right cues to the developing organs. Here, we report that pitx2 is required early in the Nodal signaling pathway for specification of the endodermal and mesodermal germ layers. We found that pitx2 is expressed very early during Xenopus and zebrafish development and in many regions where Nodal signaling is required, including the presumptive mesoderm and endoderm at the blastula and gastrula stages and the prechordal mesoderm at later stages. In Xenopus embryos, overexpression of pitx2 caused ectopic expression of goosecoid and sox-17 and interfered with mesoderm formation. Overexpression of pitx2 in Xenopus animal cap explants partially mimics the effects of Nodal overexpression, suggesting that pitx2 is a mediator of Nodal signaling during specification of the endoderm and prechordal plate, but not during mesoderm induction. We further demonstrate that pitx2 is induced by Nodal signaling in Xenopus animal caps and that the early expression of zebrafish pitx2 is absent when the Nodal signaling pathway is inactive. Inhibition of pitx2 function using a chimeric EnR-pitx2 blocked specification of the mesoderm and endoderm and caused severe embryonic defects resembling those seen when Nodal signaling is inhibited. Following inhibition of pitx2 function, the fate of ventral vegetal blastomeres was shifted from an endodermal to a more mesodermal fate, an effect that was reversed by wild-type pitx2. Finally, we show that inhibition of pitx2 function interferes with the response of cells to Nodal signaling. Our results provide direct evidence that pitx2 function is required for normal specification of the endodermal and mesodermal germ layers.  相似文献   

3.
4.
Early patterning of the endoderm as a prerequisite for pancreas specification involves retinoic acid (RA) as a critical signalling molecule in gastrula stage Xenopus embryos. In extension of our previous studies, we made systematic use of early embryonic endodermal and mesodermal explants. We find RA to be sufficient to induce pancreas-specific gene expression in dorsal but not ventral endoderm. The differential expression of retinoic acid receptors (RARs) in gastrula stage endoderm is important for the distinct responsiveness of dorsal versus ventral explants. Furthermore, BMP signalling, that is repressed dorsally, prevents the formation of pancreatic precursor cells in the ventral endoderm of gastrula stage Xenopus embryos. An additional requirement for mesoderm suggests the production of one or more further pancreas inducing signals by this tissue. Finally, recombination of manipulated early embryonic explants, and also inhibition of RA activity in whole embryos, reveal that RA signalling, as it is relevant for pancreas development, operates simultaneously on both mesodermal and endodermal germ layers.  相似文献   

5.
6.
Angioblasts, the precursor cells that comprise the endothelial layer of blood vessels, arise from a purely mesodermal population. Individual angioblasts coalesce to form the primary vascular plexus through a process called vasculogenesis. A number of reports in the literature suggest that signals from the adjacent endoderm are necessary to induce angioblast specification within the mesoderm. We present evidence, using both embryological and molecular techniques, indicating that endoderm is not necessary for the induction of angioblasts. Xenopus embryos that had endoderm physically removed at the onset of gastrulation still express vascular markers. Furthermore, animal caps stimulated with bFGF form angioblasts in the absence of any detectable endodermal markers. These results show that endoderm is not required for the initial formation of angioblasts. While Xenopus embryos lacking endoderm contain aggregates of angioblasts, these angioblasts fail to assemble into endothelial tubes. Endothelial tube formation can be rescued, however, by implantation of endodermal tissue from sibling embryos. Based on these studies in Xenopus, and corroborating experiments using the quail embryo, we conclude that endoderm is not required for angioblast specification, but does play an essential role in the formation of vascular tubes.  相似文献   

7.
Fibroblast growth factor (FGF) is established as an initiator of signaling events critical for neurogenesis and mesoderm formation during early Xenopus embryogenesis. However, less is known about the role FGF signaling plays in endoderm specification. Here, we show for the first time that endoderm-specific genes are induced when FGF signaling is blocked in animal cap explants. This block of FGF signaling is also responsible for a significant enhancement of endodermal gene expression in animal cap explants that are injected with a dominant-negative BMP-4 receptor (DNBR) RNA or treated with activin, however, neural and mesoderm gene expression is diminished. Consistent with these results, the injection of dominant-negative FGF receptor (DNFR) RNA expands endodermal cell fate boundaries while FGF treatment dramatically reduces endoderm in whole embryos. Taken together, these results indicate that inhibition of FGF signaling promotes endoderm formation, whereas the presence of active FGF signaling is necessary for neurogenesis/mesoderm formation.  相似文献   

8.
Y Sasai  B Lu  S Piccolo    E M De Robertis 《The EMBO journal》1996,15(17):4547-4555
Spemann's organizer has potent neural inducing and mesoderm dorsalizing activities in the Xenopus gastrula. A third activity, the organizer's ability to induce a secondary gut, has been difficult to analyze experimentally due to the lack of early gene markers. Here we introduce endodermin, a pan-endodermal gene marker, and use it to demonstrate that chordin (Chd), a protein secreted by the organizer region, is able to induce endodermal differentiation in Xenopus. The ability of chd, as well as that of noggin, to induce endoderm in animal cap explants is repressed by the ventralizing factor BMP-4. When FGF signaling is blocked by a dominant-negative FGF receptor in chd-injected animal caps, neural induction is inhibited and most of the explant is induced to become endoderm. The results suggest that proteins secreted by the organizer, acting together with known peptide growth factors, regulate differentiation of the endodermal germ layer.  相似文献   

9.
In the sea urchin, entry of β-catenin into the nuclei of the vegetal cells at 4th and 5th cleavages is necessary for activation of the endomesoderm gene regulatory network. Beyond that, little is known about how the embryo uses maternal information to initiate specification. Here, experiments establish that of the three maternal Wnts in the egg, Wnt6 is necessary for activation of endodermal genes in the endomesoderm GRN. A small region of the vegetal cortex is shown to be necessary for activation of the endomesoderm GRN. If that cortical region of the egg is removed, addition of Wnt6 rescues endoderm. At a molecular level, the vegetal cortex region contains a localized concentration of Dishevelled (Dsh) protein, a transducer of the canonical Wnt pathway; however, Wnt6 mRNA is not similarly localized. Ectopic activation of the Wnt pathway, through the expression of an activated form of β-catenin, of a dominant-negative variant of GSK-3β or of Dsh itself, rescues endomesoderm specification in eggs depleted of the vegetal cortex. Knockdown experiments in whole embryos show that absence of Wnt6 produces embryos that lack endoderm, but those embryos continue to express a number of mesoderm markers. Thus, maternal Wnt6 plus a localized vegetal cortical molecule, possibly Dsh, is necessary for endoderm specification; this has been verified in two species of sea urchin. The data also show that Wnt6 is only one of what are likely to be multiple components that are necessary for activation of the entire endomesoderm gene regulatory network.  相似文献   

10.
11.
We have raised a monoclonal antibody, 4G6, against gut manually isolated from stage 42Xenopus laevis embryos. It is specific for endoderm and recognises an epitope that is first expressed at stage 19 and which persists throughout subsequent development. The antibody maintains gut specificity through metamorphosis and into adulthood. The epitope is conserved in the mouse, where it is also found in the gut. Isolated vegetal poles fromXenopus blastula stage embryos express the epitope autonomously after culturing to the appropriate stage. This shows that certain aspects of endoderm differentiation do not require germ layer interactions. Animal cap cells from stage 9 blastulae cultured in the presence of the mesodermal growth factors FGF, XTC-MIF and PIF form both endodermal and mesodermal tissues, assessed by the binding of tissue-specific monoclonal antibodies. Endoderm is typically found in those caps which form intermediate and ventral forms of mesoderm, that is muscle and lateral plate. Correspondence to: E.A. Jones  相似文献   

12.
Snir M  Ofir R  Elias S  Frank D 《The EMBO journal》2006,25(15):3664-3674
Cellular competence is defined as a cell's ability to respond to signaling cues as a function of time. In Xenopus laevis, cellular responsiveness to fibroblast growth factor (FGF) changes during development. At blastula stages, FGF induces mesoderm, but at gastrula stages FGF regulates neuroectoderm formation. A Xenopus Oct3/4 homologue gene, XLPOU91, regulates mesoderm to neuroectoderm transitions. Ectopic XLPOU91 expression in Xenopus embryos inhibits FGF induction of Brachyury (Xbra), eliminating mesoderm, whereas neural induction is unaffected. XLPOU91 knockdown induces high levels of Xbra expression, with blastopore closure being delayed to later neurula stages. In morphant ectoderm explants, mesoderm responsiveness to FGF is extended from blastula to gastrula stages. The initial expression of mesoderm and endoderm markers is normal, but neural induction is abolished. Churchill (chch) and Sip1, two genes regulating neural competence, are not expressed in XLPOU91 morphant embryos. Ectopic Sip1 or chch expression rescues the morphant phenotype. Thus, XLPOU91 epistatically lies upstream of chch/Sip1 gene expression, regulating the competence transition that is critical for neural induction. In the absence of XLPOU91 activity, the cues driving proper embryonic cell fates are lost.  相似文献   

13.
14.
The endodermal germ layer gives rise to the inner epithelial lining of the gastrointestinal tract, while that of the mesoderm gives rise to the outer smooth muscle layer. Much of the work in chick shows that the mesoderm plays an important role in endodermal differentiation, and recent results in Xenopus have begun to elucidate the factors involved in establishing endodermal cell fate. However, little is know about the signals responsible for the initial specification and pattern of the endoderm. In a recent paper, Wells and Melton have investigated the importance of early mesectodermal-endodermal interactions in the initial specification of the early mouse endoderm.(1) They demonstrate that the initial specification and differentiation of the endoderm does not occur cell-autonomously, but requires signals released from the mesectoderm.  相似文献   

15.
Studies of morphogenesis in early Xenopus embryos have focused primarily on gastrulation and neurulation. Immediately following these stages is another period of intense morphogenetic activity, the neurula-to-tailbud transition. During this period the embryo is transformed from the spherical shape of the early stages into the long, thin shape of the tailbud stages. While gastrulation and neurulation depend largely on active cell rearrangement and cell shape changes in dorsal tissues, we find that the neurula-to-tailbud transition depends in part on activities of ventral cells. Ventral explants of neurula lengthen autonomously as much as the ventral sides of intact embryos, while dorsal explants lengthen less than the dorsal sides of intact embryos. Analyses of cell division, cell shapes, and cell rearrangement by transplantation of labeled cells and by time lapse recordings in live intact embryos concur that cell rearrangements in ventral mesoderm and ectoderm contribute to the autonomous anterior-posterior axis lengthening of ventral explants between neurula and tailbud stages.  相似文献   

16.
17.
The effect of growth factors on the formation of cardiac mesoderm in the urodele, Ambystoma mexicanum (axolotl), has been examined using an in vitro explant system. It has previously been shown that cardiac mesoderm is induced by pharyngeal endoderm during neurula stages in urodeles. In this study, explants of prospective cardiac mesoderm from early neurula stage embryos rarely formed beating cardiac tissue in culture. When transforming growth factor beta-1 (TGF-beta 1) or platelet-derived growth factor BB (PDGF) was added to such explants, the frequency of heart tissue formation increased markedly. The addition of other growth factors to these explants did not enhance cardiac mesoderm formation. The addition of basic fibroblast growth factor (bFGF) to prospective heart mesoderm derived from later stage embryos resulted in a decreased tendency to form cardiac tissue. These results suggest that growth factors analogous to TGF-beta 1, PDGF, and bFGF may regulate the initial stages of vertebrate cardiac development in vivo.  相似文献   

18.
19.
20.
The endoderm gives rise the respiratory and digestive tract epithelia as well as associated organs such as the liver, lungs and pancreas. Investigations examining the molecular basis of embryonic endodermal patterning and organogenesis have been hampered by the lack of regionally expressed molecular markers in the early endoderm. By differentially screening an arrayed cDNA library, combined with an in situ hybridization screen we identified 13 new genes regionally expressed in the early tailbud endoderm of the Xenopus embryo. The putative proteins encoded by these cDNAs include a cell surface transporter, secreted proteins, a protease, a protease inhibitor, an RNA-binding protein, a phosphatase inhibitor and several enzymes. We find that the expression of these genes falls into one of three re-occurring domains in the tailbud embryo; (1). a ventral midgut, (2). posterior to the midgut and (3). in the dorsal endoderm beneath the notochord. Several of these genes are also regionally expressed at gastrula and neurula stages and appear to mark territories that were previously only predicted by the endoderm fate map. This indicates that there is significant positional identity in the early endoderm long before stages 28-32 when regional specification of the endoderm is thought to occur. These new genes provide valuable tools for studying endodermal patterning and organogenesis in Xenopus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号