首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of the actin-sequestering peptide, thymosin beta 4, was analyzed in proliferating rat thymocytes, activated by diverse stimuli, during the early G1 phase and the S phase. In the presence of concanavalin A a 6.3-fold increase of thymosin beta 4 occurred already after 1 h of stimulation without elevation of the corresponding mRNA level. In contrast, during the S phase the increase of thymosin beta 4 (2.5-fold) was accompanied by a higher mRNA level, but did not exceed the growth related increase of total protein. Stimulation with a crosslinked antibody against rat T cell antigen receptor or stimulation with phorbol 12-myristate 13-acetate (PMA) and Ca(2+)-ionophore A23187, separately or in combination, did not lead to the marked increase of the thymosin beta 4 concentration in the early G1 phase but resulted in elevated thymosin beta 4 peptide and mRNA levels during the S phase. It therefore appears that protein kinase C activation and a rise in cytoplasmic Ca(2+)-concentration are not exclusively responsible for the stimulation of thymosin beta 4 specific translation in thymocytes. This assumption was reinforced by the observation that inhibition of the protein kinase C activity by 1-(5-isoquinolinylsulfony)-2-methylpiperazine (H-7) did not affect the cellular thymosin beta 4 content 1 h and 48 h after concanavalin A (Con A) stimulation.  相似文献   

2.
Cell-cycle-regulated expression of thymosin beta 4 in thymocytes.   总被引:2,自引:0,他引:2  
Thymosin beta 4 belongs to a family of ubiquitous peptides present at a high cellular content but still with an unknown intracellular function. The expression of this peptide was studied in concanavalin-A-stimulated, proliferating rat thymocytes during cell cycle progression. An early, transient 10-fold increase of the peptide occurred 1 h after stimulation without elevation of the corresponding mRNA level. This increase coincided with that of thymosin beta 4 biosynthesis. The sharp decline of the thymosin beta 4 content was not due to a secretion of the peptide into the medium. During S phase and mitosis, the biosynthetic rates as well as mRNA content, but not the cellular thymosin beta 4 concentration, increased again. After 96 h of culture the values returned to those of quiescent cells.  相似文献   

3.
4.
Thymosin beta4 (43 aa) is a highly conserved acidic peptide which regulates actin polymerization in mammalian cells by sequestering globular actin. Thymosin beta4 is undergoing clinical trials as a drug for the treatment of venous stasis ulcers, corneal wounds and injuries, as well as acute myocardial infarction. Currently, thymosin beta4 is produced with solid-phase chemical synthesis. Biotechnological synthesis of this peptide presents difficulties because N-terminal amino acid residue of thymosin beta4 is acetylated. In this study we propose a method for producing the recombinant precursor of thymosin beta4 and its subsequent targeted chemical acetylation. Desacetylthymosin beta4 was synthesized as a part of a hybrid protein with thioredoxin and a specific TEV (tobacco etch virus) protease cleavage site. The following scheme was developed for the purification of desacetylthymosin beta4: (i) the biosynthesis of a soluble hybrid protein (HP) in Escherichia coli; (ii) isolation of the HP by ion exchange chromatography; (iii) cleavage of the HP with TEVprotease; (iv) purification of desacetylthymosin beta4 by ultra-filtration. N-terminal acetylation of desacetylthymosin beta4 was performed with acetic anhydride under acidic conditions (pH 3). The reaction yield was 55%. Thymosin beta4 was then purified by reverse-phase high performance liquid chromatography. The proposed synthetic approach to recombinant thymosin beta4 is suitable for scale-up and can provide for the medical use of highly purified preparation with a yield of 20 mg from 1 L of culture.  相似文献   

5.
6.
7.
The chemical synthesis of thymosin beta 4 using a solid-phase procedure has been accomplished. The synthetic product was found to be homogeneous on paper electrophoresis at pH 6.5, high-performance liquid chromatography on a reversed-phase column, and isoelectric focusing using polyacrylamide gels. The synthetic material was also shown to be identical with the natural thymosin beta 4 by tryptic peptide mapping, amino acid compositional analyses, and polyacrylamide gel isoelectric focusing. Biologically, synthetic thymosin beta 4 was found to be as active as the natural compound in a terminal deoxynucleotidyltransferase induction assay and in a macrophage migration inhibition assay. The proposed structure of the peptide hormone was thus confirmed by a chemical synthesis.  相似文献   

8.
9.
Biosynthesis rates and content of thymosin beta 4 in cell lines   总被引:3,自引:0,他引:3  
The content and relative biosynthetic rates of thymosin beta 4 have been determined in 28 different cell lines. The highest content of thymosin beta 4 as well as the highest rate of biosynthesis was observed in Epstein-Barr virus-transformed human B-cell lines. The levels observed in these cells are 1 pg thymosin beta 4 per cell, which is three times higher than that in rat peritoneal macrophages. Thus, these B-cell lines have the highest content of thymosin beta 4 of any cell type yet described. Since all of the Epstein-Barr virus-transformed B-cells described here grow in suspension, it is unlikely that the presence of thymosin beta 4 is related to anchorage in these cells. Thymosin beta 4 is not secreted by viable Epstein-Barr virus-transformed B cells in culture, suggesting some intracellular function of the peptide. These results indicate that these B-cell lines may be suitable for the study of thymosin beta 4 function.  相似文献   

10.
The lipid signaling molecule ceramide is formed by the action of acid and neutral sphingomyelinases and degraded by acid and neutral ceramidases. Short-term stimulation of mesangial cells with the pro-inflammatory cytokine interleukin-1beta (IL-1beta) leads to a rapid and transient increase in neutral sphingomyelinase activity (Kaszkin, M., Huwiler, A., Scholz, K., van den Bosch, H., and Pfeilschifter, J. (1998) FEBS Lett. 440, 163-166). In this study, we report on a second delayed peak of activation occurring after hours of IL-1beta treatment. This second phase of activation was first detectable after 2 h of treatment and steadily increased over the next 2 h, reaching maximal values after 4 h. In parallel, a pronounced increase in neutral ceramidase activity was observed, accounting for a constant or even decreased level of ceramide after long-term IL-1beta treatment, despite continuous sphingomyelinase activation. The increase in neutral ceramidase activity was due to expressional up-regulation, as detected by an increase in mRNA levels and enhanced de novo protein synthesis. The increase in neutral ceramidase protein levels and activity could be blocked dose- dependently by the p38 MAPK inhibitor SB 202190, whereas the classical MAPK pathway inhibitor U0126 and the protein kinase C inhibitor Ro 318220 were ineffective. Moreover, cotreatment of cells for 24 h with IL-1beta and SB 202190 led to an increase in ceramide formation. Interestingly, IL-1beta-stimulated neutral ceramidase activation was not reduced in mesangial cells isolated from mice deficient in MAPK-activated protein kinase-2, which is a downstream substrate of p38 MAPK, thus suggesting that the p38 MAPK-mediated induction of neutral ceramidase occurs independently of the MAPK-activated protein kinase-2 pathway. In summary, our results suggest a biphasic regulation of sphingomyelin hydrolysis in cytokine-treated mesangial cells with delayed de novo synthesis of neutral ceramidase counteracting sphingomyelinase activity and apoptosis. Neutral ceramidase may thus represent a novel cytoprotective enzyme for mesangial cells exposed to inflammatory stress conditions.  相似文献   

11.
A small acidic polypeptide, termed thymosin beta 10, has been identified and is present in the nervous system of the rat by the ninth day of gestation. Thymosin beta 10 levels rise during the remaining days of life in utero, and then decline to nearly undetectable values between the second and fourth week post partum. The present study investigates the possible developmental signals and mechanisms that might regulate the expression of thymosin beta 10 during neuroembryogenesis. Many cell lines derived from tumors of the central nervous system express thymosin beta 10, as well as its homologue gene product, thymosin beta 4. Because some of these cell lines respond to exogenously applied agents by increasing their apparent state of differentiation, we have determined whether thymosin beta 10 levels are coordinately modulated. In several neuroblastomas, including the B103 and B104 lines, retinoic acid elicits a time- and dose-dependent increase in the content of thymosin beta 10, but not that of thymosin beta 4. The increase in thymosin beta 10 polypeptide is associated with a marked increase in the specific mRNA encoding this molecule. The mRNA for thymosin beta 4 is unaffected by retinoic acid. This is in contrast with the situation in vivo, where the expression of both genes decreases after birth. Other agents that influence the morphology of B104 cells, such as phorbol esters and dibutyryl cyclic AMP, have no influence on beta-thymosin levels. A range of steroids, which like retinoids act upon nuclear receptors, was also inactive. The stimulatory action of retinoic acid is detectable within 4 h, and thymosin beta 10 peptide levels continue to rise for at least 4 days. The influence of the isoprenoid is fully reversible and exhibits structural specificity. We believe that this culture system is mimicking the early rising phase of thymosin beta 10 levels in brain and that endogenous retinoids may be candidate physiological regulators of this gene.  相似文献   

12.
Thymosin beta10 is a cytoplasm G-actin sequestering protein whose functions are largely unknown. To determine the direct effects of exogenous thymosin beta10 on angiogenic potentials as endothelial cell migration and capillary-like tube formation, human coronary artery endothelial cells (HCAECs) were incubated with increasing doses of thymosin beta10 (25-100 ng/ml). By using a modified Boyden chamber assay, thymosin beta10 inhibited cell migration in a dose- and time-dependent manner with the maximal effect being a 36% reduction at 100 ng/ml as compared to controls (P < 0.01). In addition, thymosin beta10 (100 ng/ml) significantly inhibited the capillary-like tube-formation of HCAECs on Matrigel, showing a 21% reduction of the total tube length as compared to negative controls (P < 0.01). Furthermore, by using real time PCR analysis, thymosin beta10 significantly decreased mRNA levels of vascular endothelial growth factor (VEGF), VEGF receptor-1 (VEGFR-1) and integrin alphaV after 24 h treatment in HCAECs. By contrast, thymosin beta4 significantly increased HCAEC migration. These results indicate that thymosin beta10, but not thymosin beta4, have direct inhibitive effects on endothelial migration and tube formation that might be mediated via downregulation of VEGF, VEGFR-1 and integrin alphaV in HCAECs. This study suggests a potential therapeutic application of thymosin beta10 to the diseases with excessive angiogenesis such as cancer.  相似文献   

13.
The combination of phorbol 12-myristate 13-acetate (PMA) and ionomycin produces a dramatic increase in the incorporation of [2-3H]mannose into Glc3Man9GlcNAc2-P-P-dolichol and glycoprotein, and the induction of RNA and DNA synthesis in murine splenic B lymphocytes (B cells). The kinetics of the induction processes and the concentrations of PMA and ionomycin required for the optimal response have been defined. While the levels of induction of RNA and DNA synthesis by PMA + ionomycin were similar to the mitogenic response to bacterial lipopolysaccharide, activation by PMA and the calcium ionophore resulted in a threefold higher stimulation in dolichol-linked oligosaccharide biosynthesis and protein N-glycosylation. These results indicate that all signalling mechanisms that trigger RNA and DNA synthesis may not be sufficient to produce maximal induction of the N-glycosylation apparatus. 1-(5-Isoquinolinesulfonyl)-2-methylpiperazine (H-7), a potent protein kinase C inhibitor, prevented the induction of protein N-glycosylation activity (IC50 = 11 microM), as well as RNA (IC50 = 18 microM) and DNA synthesis (IC50 = 12 microM), two common indices of B cell activation. N-[2-(Methylamino)ethyl]-5-isoquinolinesulfonamide (H-8) also inhibited the induction of oligosaccharide-lipid intermediate, glycoprotein, RNA, and DNA synthesis, but required higher concentrations than H-7 for 50% inhibition. N-(2-Guanidinoethyl)-5-isoquinolinesulfonamide (HA1004), a potent inhibitor of cyclic nucleotide-dependent protein kinases, had little effect on the activation of the B cell metabolic processes. The H-7-sensitive reactions involved in the induction of RNA and DNA synthesis occurred within 4 h, but induction of lipid intermediate and glycoprotein biosynthesis remained sensitive to H-7 for 10 h after exposure to PMA and ionomycin. Direct in vitro assays in the presence of 0.6% Brij 58 reveal that a cytosolic, phospholipid-dependent protein kinase activity is translocated to a membrane site(s) after treatment with PMA and ionomycin, and the translocated protein kinase is sensitive to H-7. The relative order of potency of the protein kinase inhibitors on the metabolic processes strongly supports the hypothesis that protein kinase C, acting synergistically with Ca2+ mobilization, plays a key regulatory role in the early stages of B cell activation. The synthesis of oligosaccharide-lipid intermediates and protein N-glycosylation are also shown to be induced in B cells activated by PMA + ionomycin.  相似文献   

14.
To detect nuclear proteins that might be involved in induction of cellular mitogenesis, we examined the effect of various mitogens on early changes in synthesis of nuclear proteins in murine B lymphocytes. Using two-dimensional gel electrophoresis, we found that activation of B cells by mitogens (anti-immunoglobulin antibody, lipopolysaccharide, phorbol 12-myristate 13-acetate (PMA)/A23187) was associated with a rapid and prominent (5-20-fold) increase in the synthesis of a 40-kDa/pI 5.0 nuclear protein, here termed numatrin. Numatrin was found to be absent from the cytosol (soluble fraction) of resting as well as activated B cells and was markedly resistant to DNase/RNase digestion and 2 N NaCl extraction, indicating that this protein is tightly bound to the nuclear matrix. Kinetic studies showed that the increase in synthesis of numatrin was detected 60-120 min following mitogen activation, reached a peak at 16 h, and declined to almost control level by 48 h, correlating with the peak of cellular DNA synthesis. The increase in synthesis of numatrin in normal B cells was found to be associated exclusively with cellular commitment for mitogenesis because activation of B cells by stimuli such as B cell stimulating factor 1, PMA alone, and calcium ionophore A23187, which do not stimulate an increase in DNA synthesis, also failed to induce an increase in the synthesis of numatrin. Inhibition of anti-Ig-induced proliferation (by PMA pretreatment) was associated with a 63% inhibition in the synthesis of numatrin. Addition of 8-mercaptoguanosine to these PMA-treated cells was associated with restoration of the increase in synthesis of numatrin, concomitant with induction of proliferation. Elevated synthesis of numatrin was also detected in the malignant B lymphoma cells: Raji, BAL-17, and WEHI-231. Taken collectively, these results suggest that numatrin, a tightly bound nuclear matrix protein, is a growth-regulated protein which might have an important role in regulation of cellular mitogenesis in normal and malignant B lymphocytes.  相似文献   

15.
beta-Thymosins, small acidic peptides with multiple functions   总被引:10,自引:0,他引:10  
The beta-thymosins are a family of highly conserved polar 5 kDa peptides originally thought to be thymic hormones. About 10 years ago, thymosin beta(4) as well as other members of this ubiquitous peptide family were identified as the main intracellular G-actin sequestering peptides, being present in high concentrations in almost every cell. beta-Thymosins bind monomeric actin in a 1:1 complex and act as actin buffers, preventing polymerization into actin filaments but supplying a pool of actin monomers when the cell needs filaments. Changes in the expression of beta-thymosins appear to be related to the differentiation of cells. Increased expression of beta-thymosins or even the synthesis of a beta-thymosin normally not expressed might promote metastasis possibly by increasing mobility of the cells. Thymosin beta(4) is detected outside of cells in blood plasma or in wound fluid. Several biological effects are attributed to thymosin beta(4), oxidized thymosin beta(4), or to the fragment, acSDKP, possibly generated from thymosin beta(4). Among the effects are induction of metallo-proteinases, chemotaxis, angiogenesis and inhibition of inflammation as well as the inhibition of bone marrow stem cell proliferation. However, nothing is known about the molecular mechanisms mediating the effects attributed to extracellular beta-thymosins.  相似文献   

16.
To characterize the requirements for the induction of an anergic state in immunocompetent cells we examined the effect of an increase in intracellular calcium concentration on the subsequent responsiveness of cytolytic T cells to antigenic stimulation in vitro. Pretreatment of a murine cytolytic T cell clone with the calcium-ionophore A23187 resulted in the induction of an anergic state characterized by a decrease in cytolytic activity and granule exocytosis upon Ag-specific stimulation. Furthermore, IFN-gamma synthesis declined whereas de novo synthesis of a yet unidentified protein with a molecular mass of 33 kDa as well as proliferative response of cells in response to exogenous IL-2 were unaffected. This state of partial unresponsiveness 1) could be prevented by concomitant pretreatment of cells with cyclosporin A or protein synthesis inhibitors and 2) was reversible within 48 h. Biochemical analysis of TCR-induced intracellular activation revealed a block in signal transduction before the activation of protein kinase C because cellular unresponsiveness could be bypassed by the phorbol ester PMA plus the calcium-ionophore A23187. However, phosphatidylinositol turnover was markedly inhibited in unresponsive cells that also did not show a calcium influx on stimulation with concanavalin A. We conclude that a rise in intracellular calcium in cytolytic T cells might not only be necessary for cellular activation but may also trigger the induction of a partial unresponsiveness to antigenic stimulation due to an inhibition in the early phase of signal transduction.  相似文献   

17.
In vitro incubation of hepatocytes acutely isolated from adult male rats leads to a rapid conversion of the adrenergic activation of glycogenolysis from an alpha 1-receptor (alpha 1AR) to a beta 2-receptor (beta 2AR) mediated response within 4 h. In order to understand the underlying mechanism, we examined time-dependent changes in alpha 1- and beta 2-adrenergic activation of glycogenolysis and second messenger systems, the cellular density and affinity of alpha 1AR and beta 2AR, and the steady state levels of alpha 1BAR and beta 2AR mRNAs. Incubation of hepatocytes for 4 h resulted in a decrease in phosphorylase activation and inositol 1,4,5 trisphosphate accumulation in response to phenylephrine, a 40% decrease in alpha 1AR density, and a 70% decrease in alpha 1BAR mRNA levels. Incubation of hepatocytes for 4 h also resulted in the emergence of a phosphorylase response to isoproterenol, an increase in isoproterenol-induced but not in glucagon- or forskolin-induced cAMP accumulation, no significant change in beta 2AR density, and a twofold increase in beta 2AR mRNA levels. Exposure of cells to cycloheximide, 2 microM throughout the 4 h incubation, prevented the emergence of the phosphorylase response to isoproterenol and reduced beta 2AR densities, while the decrease in alpha 1AR density was not affected and the decrease in phosphorylase activation by phenylephrine was attenuated. The results indicate that dissociation of rat liver cells triggers a rapidly developing decrease in alpha 1BAR mRNA and increase in beta 2AR mRNA levels and corresponding inverse changes in the synthesis of alpha 1BAR and beta 2AR which account, at least in part, for the rapid conversion from alpha 1- to beta 2-adrenergic glycogenolysis.  相似文献   

18.
We have produced thymosin beta 4 protein in Escherichia coli as a chimeric protein with tumor necrosis factor (TNF). The protein was abundantly expressed, was immunoreactive against both anti-thymosin beta 4 and anti-TNF antibodies, and retained cytotoxicity in a TNF assay using mouse L929 fibroblasts. This latter characteristic enabled the easy and simple purification of thymosin beta 4 merely by following the TNF activity. The chimeric protein was designed to have an Asp-Pro bridge between thymosin beta 4 and TNF which could be specifically cleaved under suitable acidic conditions to release the thymosin beta 4 from the chimeric protein. These results indicate that the expression system in E.coli of a chimeric protein composed of thymosin beta 4 and TNF is appropriate for obtaining an abundant amount of the beta 4 peptide, especially since its purification from tissues is usually difficult because of limited yield and obscurity of its biological activity.  相似文献   

19.
Interleukin-1beta (IL-1beta) has been shown in numerous studies to increase prostaglandin (PG) output by up-regulating the expression of cyclooxygenase-2 (COX-2), a rate-limiting enzyme in PG synthesis. In this study, we investigated the possible role of the nuclear factor kappa B (NFkappaB) in IL-1beta signaling, leading to the expression of COX-2 in human amnion cell culture. Fetal amnion was obtained following vaginal delivery and digested with collagenase, and the subepithelial (mesenchymal) cells were isolated. Cultures were characterized with antisera to keratin (epithelial cells) and vimentin (mesenchymal cells). Confluent cells were stimulated with human recombinant IL-1beta, and activation of NFkappaB was assessed by measuring changes in the inhibitory protein IkappaB (total IkappaB and phosphorylated IkappaB) using Western blot analysis as well as by nuclear binding of NFkappaB using an electrophoretic mobility shift assay. COX-2 protein levels were determined by Western blot analysis. After 5 min of stimulation with IL-1beta, phosphorylated IkappaB began to appear, 90% of which was degraded within 15 min. This was temporally associated with decreased total IkappaB and increased nuclear NFkappaB DNA-binding activity. In the IL-1beta-treated group, COX-2 protein began to increase after 6 h; this response was time-dependent, with a significant increase until 24 h after IL-1beta stimulation. When NFkappaB translocation was blocked by using SN50 (a cell-permeable inhibitory peptide of NFkappaB translocation), the synthesis of COX-2 protein was inhibited. These results suggest that NFkappaB is involved in the IL-1beta-induced COX-2 expression in the mesenchymal cells of human amnion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号