首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Age-dependent changes in the distribution of microtubule-associated proteins (MAPs) were analyzed in young (3-months, N = 3) and old (24-months, N = 3) rat brain. In the young rats, MAP1 and MAP5 exhibited prominent immunostaining in the perikarya and dendrites whereas MAP2 was selectively localized in the dendrites. In the cerebellum, MAP2 was preferentially localized in finer and distal branches of Purkinje cell dendrites and in punctate deposits surrounding glomeruli. In general, aging resulted in obvious declines in MAP2- >> MAP1- and MAP5-immunoreactivities in the hippocampus and parietal cortex but no change in cerebellum. The results indicate that: (1) hippocampus is the most affected and cerebellum is the least affected region with regard to declines in MAPs-immunoreactivities in the aged rat brain; (2) dendrite-specific MAP2 is almost completely depleted from most dendrites in the hippocampus and cortex. In summary, loss of MAP2-immunoreactivity in the affected brain areas may be associated with age-related impairment of synaptic plasticity, cognition and memory functions.  相似文献   

2.
Methamphetamine (MAP) is known to alter behavior and cause deficits in learning and memory. While the major site of action of MAP is on mesolimbic dopaminergic pathways, the effects on learning and memory raise the possibility of important actions in the hippocampus. We have studied electrophysiologic and morphologic effects of MAP in the CA1 region of hippocampus from young male rats chronically exposed to MAP, male rats exposed during gestation only and the effects of bath perfusion of MAP onto brain slices from control rats. Pyramidal neurons in brain slices from chronically exposed rats had reduced membrane potential and membrane resistance. Long-term potentiation (LTP) was reduced as compared to control, but when MAP was acutely perfused over control slices the amplitude of LTP was increased. LTP in young adult animals that had been gestationally exposed to MAP showed reduced LTP as compared to controls. Morphologically CA1 pyramidal neurons in chronically exposed animals showed a high prevalence of extensive blebbing of dendrites. We conclude that the NMDA receptor and the process of LTP are also targets of MAP dysfunction, at least in the hippocampus.  相似文献   

3.
Monoclonal antibody (MAb) G10 labels a single high mol. wt. (HMW) band on Western blots of microtubule preparations from 2 day old rat brain. The G10 antigen is thermolabile and co-migrates with microtubule-associated protein (MAP)1 from young rat brain on low percentage (5%) polyacrylamide-SDS gels. The G10 antigen decreases by about five times from birth to adulthood in the rat cerebellum. The same single band is labelled on Western blots of homogenates of whole neonatal rat brain but no labelling is found using neonatal or adult kidney, lung or liver. We have therefore identified a brain-specific MAP1, designated MAP1(x). Immunofluorescence microscopy using MAb G10 on parasagittal sections of rat cerebella shows labelling of the newly formed molecular layer in 6 day old rats. Only a narrow band close to the pial surface is labelled in 18 day old animals, which disappears in the adult. Labelling of the cerebellar white matter found in young rats also disappears. Neurones but not flat cells in cerebellar cultures label with MAb G10. All staining patterns are consistent with an axonal distribution of the antigen. MAP1(x) may be part of a developmentally regulated microtubule structure.  相似文献   

4.
Abstract: Aging in rats is associated with a loss of hippocampal neurons, which may contribute to age-related cognitive deficits. Several lines of evidence suggest that stress and glucocorticoids may contribute to age-related declines in hippocampal neuronal number. Excitatory amino acids (EAAs) have been implicated in the glucocorticoid endangerment and stress-induced morphological changes of hippocampal neurons of young rats. Previously, we have reported that acute immobilization stress can increase extracellular concentrations of the endogenous excitatory amino acid, glutamate, in the hippocampus. The present study examined the effect of an acute bout of immobilization stress on glutamate levels in the hippocampus and medial prefrontal cortex of young (3–4-month) and aged (22–24-month) Fischer 344 rats. In addition, the effect of stress on spectrin proteolysis in these two brain regions was also examined. Spectrin is a cytoskeleton protein that contributes to neuronal integrity and proteolysis of this protein has been proposed as an important component of EAA-induced neuronal death. There was no difference in basal glutamate levels between young and old rats in the hippocampus or medial prefrontal cortex. During the period of restraint stress a modest increase in glutamate levels in the hippocampus of young and aged rats was observed. After the termination of the stress procedure, hippocampal glutamate concentrations continued to rise in the aged rats, reaching a level approximately five times higher than the young rats, and remained elevated for at least 2 h after the termination of the stress. A similar pattern was also observed in the medial prefrontal cortex with an augmented post-stress-induced glutamate response observed in the aged rats. There was no increase in spectrin proteolysis in the hippocampus or medial prefrontal cortex of young or aged rats after stress or under basal nonstress conditions. The enhanced poststress glutamate response in the aged rats may contribute to the increased sensitivity of aged rats to neurotoxic insults.  相似文献   

5.
It has been shown that modification of microtubule (MT) ultrastructure are accompanied by functional changes in microtubule-associated protein MAP2 in the hippocampus of Krushinsky--Molodkina rats (KM), which are prone to autogenic seizures. The morphogenetic analysis revealed that contrary to Wistar rats, which are insensitive to sound stimulation, in KM the middle length of microtubule fragments in the apical dendrites of pyramidal neurons in CA3 hippocampal area was reduced. Using immunoblot and autoradiography methods, we found that the level of MAP2 and the rate of its cAMP = and Ca(2+)-calmodulin-dependent phosphorylation were increased in hippocampus of KM, in comparison with Wistar rats. Daily repeated sound stimulation for 20 days (audiogenic kindling) induced a further decrease in length of MT fragments, and an increase of their density in the proximal part of apical dendrites of KM. Moreover, audiogenic kindling induced additional increase in MAP2 phosphorylation state, but did not change the level of MAP2 in KM hippocampus. We suppose that the obtained alteration of MAP2 phosphorylation state exerted influence on kinetic parameters of microtubule assembly, serving as part of genetically determined predisposition of KM to audiogenic epilepsy.  相似文献   

6.
The molecular mechanisms involved in the regulation of synaptic plasticity in the hippocampus during the estrous cycle of the rat are not completely understood. Because this process implicates changes in neuronal cytoskeleton organization, we analyzed the content of microtubule associated protein 2 (MAP2) and Tau in the hippocampus and the frontal cortex of the rat by Western blot, as well as the hippocampal distribution of MAP2 during the estrous cycle by immunohistochemistry. In the hippocampus the lowest content of MAP2 was found on diestrus day, and it significantly increased at proestrus. This increase was maintained on estrus and metestrus days. In the frontal cortex MAP2 content did not significantly change during the estrous cycle. In contrast, the content of Tau did not vary during the estrous cycle in either the hippocampus or the frontal cortex. The immunohistochemical analysis showed an increase in dendrite thickness and in dendritic branching in the CA1 region on proestrus day, as well as an aggregation of MAP2 in apical dendrites near to pyramidal somata on this day in comparison with diestrus. We suggest that changes in the content and neuronal distribution of MAP2 are involved in the structural changes that occur in the hippocampus of the rat during the estrous cycle, and that these variations are related to changes in estradiol and progesterone levels.  相似文献   

7.
Abstract: Stimuli that evoke seizure are capable of inducing structural changes in the hippocampus. However, late-acting genes related to these changes have not been described. Administration of pentylenetetrazole (PTZ; 50 mg/kg) to rats of various ages evoked tonic-clonic seizures. Using RNA gel blot analysis we found that the level of the mRNA for microtubule-associated protein 1B (MAP1B) was robustly increased in the hippocampus of 3-month-old rats. The levels of MAP1B mRNA in hippocampus peaked at 40 h and began to decline by 72 h following PTZ treatment. Immunoblotting with anti-MAP1B antibody demonstrates the increase in content of immunoreactive proteins 40–72 h after seizure onset in the hippocampus of PTZ-treated rats. These results indicate that MAP1B is a sensitive indicator of hippocampal structural changes occurring in response to PTZ-induced seizure activity.  相似文献   

8.
1. Previous work demonstrated that estradiol (E2) treatment prevented the abnormal response to stress and the reduction of glucocorticoid receptors (GR) in hippocampus from aging male rats. The mechanisms originating these effects were unknown.2. In the present work, we investigated the E2 effects on the cholinergic, growth-associated protein (GAP-43) expressing neurons of the medial septum (MS) and vertical limb of diagonal band of Broca (VDB). These areas project to the hippocampus, and may be involved in the mentioned E2 effects in aging animals. Therefore, the response to E2 of choline-acetyltransferase (ChAT) in neurons and cell processes and GAP-43 mRNA as a marker of neurite outgrowth was studied in young and old male rats.3. Young (3–4 months) and old (18–20 months) male Sprague-Dawley rats remained untreated or were implanted s.c. with a 14 mg pellet of E2 benzoate during 6 weeks. We used immoucytochemistry to determine ChAT and isotopic in situ hybridization to analyze GAP-43 mRNA expression.4. Aging males showed a reduction in the number and length of ChAT-immunoreactive cell processes, but not in the number of positive neurons in MS and VDB. E2 reverted both parameters in old rats to levels of young animals. Regarding basal levels of GAP-43 mRNA, they were similar in old and young animals, but E2 treatment up-regulated GAP-43 mRNA expression in MS and VDB of old animals only.5. Our data suggest that prolonged E2 treatment may affect hippocampal function of aging male rats by regulating in part the plasticity of cholinergic, GAP-43 expressing neurones of the basal forebrain. Without discarding a direct E2 effect on the limbic tissue, effects on the cholinergic system may have a pronounced impact on the neuroendocrine and stress responses of the aging hippocampus.  相似文献   

9.
Juvenile female and male (young) and 16-mo-old male (old) rats inhaled manganese in the form of manganese sulfate (MnSO4) at 0, 0.01, 0.1, and 0.5 mg Mn/m3 or manganese phosphate at 0.1 mg Mn/m3 in exposures of 6h/d, 5d/wk for 13 wk. We assessed biochemical end points indicative of oxidative stress in five brain regions: cerebellum, hippocampus, hypothalamus, olfactory bulb, and striatum. Glutamine synthetase (GS) protein levels, metallothionein (MT) and GS mRNA levels, and total glutathione (GSH) levels were determined for all five regions. Although most brain regions in the three groups of animals were unaffected by manganese exposure in terms of GS protein levels, there was significantly increased protein (p<0.05) in the hippocampus and decreased protein in the hypothalamus of young male rats exposed to manganese phosphate as well as in the aged rats exposed to 0.1 mg/m3 MnSO4. Conversely, GS protein was elevated in the olfactory bulb of females exposed to the high dose of MnSO4. Statistically significant decreases (p<0.05) in MT and GS mRNA as a result, of manganese exposure were observed in the cerebellum, olfactory bulb, and hippocampus in the young male rats, in the hypothalamus in the young female rats, and in the hippocampus in the senescent males. Total GSH levels significantly (p<0.05) decreased in the olfactory bulb of manganese exposed young male rats and increased in the olfactory bulb of female rats exposed to manganese. Both the aged and young female rats had significantly decreased (p<0.05) GSH in the striatum resulting from manganese inhalation. The old male rats also had depleted GSH levels in the cerebellum and hypothalamus as a result, of the 0.1-mg/m3 manganese phosphate exposure. These results demonstrate that age and sex are variables that must be considered whenassessing the neurotoxicity of manganese.  相似文献   

10.
Advanced age is associated with altered skeletal muscle hemodynamic control during the transition from rest to exercise. This study investigated the effects of aging on the functional role of nitric oxide (NO) in regulating total, inter-, and intramuscular hindlimb hemodynamic control at rest and during submaximal whole body exercise. We tested the hypothesis that NO synthase inhibition (N(G)-nitro-l-arginine methyl ester, l-NAME; 10 mg/kg) would result in attenuated reductions in vascular conductance (VC) primarily in oxidative muscles in old compared with young rats. Total and regional hindlimb muscle VCs were determined via radiolabeled microspheres at rest and during treadmill running (20 m/min, 5% grade) in nine young (6-8 mo) and seven old (27-29 mo) male Fisher 344 × Brown Norway rats. At rest, l-NAME increased mean arterial pressure (MAP) significantly by ~17% and 21% in young and old rats, respectively. During exercise, l-NAME increased MAP significantly by ~13% and 19% in young and old rats, respectively. Compared with young rats, l-NAME administration in old rats evoked attenuated reductions in 1) total hindlimb VC during exercise (i.e., down by ~23% in old vs. 43% in young rats; P < 0.05), and 2) VC in predominantly oxidative muscles both at rest and during exercise (P < 0.05). Our results indicate that the dependency of highly oxidative muscles on NO-mediated vasodilation is markedly diminished, and therefore mechanisms other than NO-mediated vasodilation control the bulk of the increase in skeletal muscle VC during the transition from rest to exercise in old rats. Reduced NO contribution to vasomotor control with advanced age is associated with blood flow redistribution from highly oxidative to glycolytic muscles during exercise.  相似文献   

11.
F Tang  J Tang  J Chou  E Costa 《Life sciences》1984,35(9):1005-1014
The beta-endorphin, met5-enkephalin-arg6-phe7 (MEAP) and met5-enkephalin (ME) changes related to age and diurnal rhythms were studied in various regions of rat brain and in the pituitary by specific radioimmunoassays. The contents of MEAP, met5-enkephalin and beta-endorphin were higher in the pituitary of old rats (18 months old) than that of young rats (23 days old) while the content of these opioid peptides was higher in the hypothalamus of young rats than in that of old rats. Beta-endorphin was also higher in the striatum of 23 days old rats, but no age-associated changes were observed in the hippocampus, brain stem or cortex. In the diurnal rhythm study, it was found that in the hypothalamus and striatum of the adult rat (2-3 months old), both MEAP and ME contents were higher at mid-dark than at mid-light and that in the intermediate posterior lobe of the pituitary, the ME content was also higher at mid-dark.  相似文献   

12.
The brain protein synthesis is sensitive to the dietary protein; however, the role of dietary protein on biomarkers including choline acetyltransferase and nerve growth factor (NGF) for the function of cholinergic neurons remains unknown in young rats. The purpose of this study was to determine whether the quantity and quality of dietary protein affects the concentration of NGF and activity of choline acetyltransferase, and their mRNA levels in the brains of young rats. Experiments were carried out on five groups of young rats (4 weeks) given the diets containing 0, 5, 20% casein, 20% gluten or 20% gelatin for 10 days. The activity of choline acetyltransferase in the cerebral cortex and hippocampus declined gradually with a decrease in quantity and quality of dietary protein. The concentration of NGF in the cerebral cortex and the mRNA levels of choline acetyltransferase in the cerebral cortex and hippocampus did not differ among groups. However, the concentration and mRNA level of NGF in the hippocampus was significantly lower in rats fed with lower quantity of protein or lower quality of protein. In the hippocampus, the mRNA levels of NGF significantly correlated with the NGF concentration when the quantity (r = 0.704, P < 0.01) and quality (r = 0.682, P < 0.01) of dietary protein was manipulated. It was further found that a significant positive correlation existed between the NGF concentration and the activity of choline acetyltransferase in the hippocampus (dietary protein quantity, r = 0.632, P < 0.05; dietary protein quality, r = 0.623, P < 0.05). These results suggest that the ingestion of lower quantity and quality of dietary protein are likely to control the mRNA level and concentration of NGF, and cause a decline in the activity of choline acetyltransferase in the brains of young rats.  相似文献   

13.
Met-enkephalin, administered microiontophoretically, produced a greater increase in firing in cells in area CA 3-4 in the hippocampus of both young and aged Fisher 344 rats than it did in the CA 1 area. Furthermore, the effect of met-enkephalin on neuronal firing rates was not as great in old rats as it was in young rats. Finally, 20-40 nA of met-enkephalin produced an increase in firing in old rats that was equivalent to the difference (2.5 spikes/sec) in baseline firing between old (2.6 spikes/sec) and young rats (5.1 spikes/sec).  相似文献   

14.
15.
Summary The distribution of MAP2 and actin in dendritic spines of the visual and cerebellar cortices, dentate fascia, and hippocampus was determined by using immunogold electron microscopy. By this approach, we have confirmed the presence of MAP2 in dendritic spines and identified substructures within the spine compartment showing MAP2 immunoreactivity. MAP2 immunolabeling was mainly associated with filaments which reacted with a monoclonal anti-actin antibody. Also, by immunogold double-labeling we colocalized MAP2 with actin on the endomembranes of the spine apparatus, smooth endoplasmic reticulum, and in the postsynaptic density. Labeling was nearly absent in axons and axonal terminals. These results indicate that MAP2 is an actin-associated protein in dendritic spines. Thus, MAP2 may organize actin filaments in the spine and endow the actin network of the spine with dynamic properties that are necessary for synaptic plasticity.  相似文献   

16.
The purpose of this investigation was to determine mean arterial pressure (MAP) and regional vascular conductance responses in young and aged Fisher-344 rats during orthostatic stress, i.e., 70 degrees head-up tilt (HUT). Both groups demonstrated directionally different changes in MAP during HUT (young, 7% increase; aged, 7% decrease). Vascular conductance during HUT in young rats decreased in most tissues but largely remained unchanged in the aged animals. Based on the higher vascular conductance of white adipose tissue from aged rats during HUT, resistance arteries from white visceral fat were isolated and studied in vitro. There was diminished maximal vasoconstriction to phenylephrine and norepinephrine (NE: young, 42 +/- 5%; old, 18 +/- 6%) in adipose resistance arteries from aged rats. These results demonstrate that aging reduces the ability to maintain MAP during orthostatic stress, and this is associated with a diminished vasoconstriction of adipose resistance arteries.  相似文献   

17.
目的观察胶质细胞源性神经营养因子(GDNF)在青年和老年大鼠小脑和海马中的表达特征。方法采用免疫组织化学方法显示GDNF在青年及老年大鼠小脑和海马的分布变化。应用计算机图像分析系统对免疫组织化学反应切片进行检测。结果青年组小脑蒲肯野细胞GDNF阳性反应明显强于老年组;但在青年和老年大鼠海马区,GDNF免疫细胞反应的差别并不明显。结论GDNF在蒲氏细胞内含量的增龄性变化提示它影响蒲肯野细胞及小脑其它神经元的功能与存活,对于小脑神经细胞的老化有重要意义。  相似文献   

18.
In previous metrifonate (MTF) studies, there has been evidence for a preferential functional effect of the drug in cortical but not in striatal regions. In the present study we investigated the kinetics of brain cholinesterase (ChE) inhibition following an acute administration of MTF (100 mg/kg) in various brain regions of young and old Fischer 344 rats. The main objective was to test the hypothesis that the functional regional selectivity, observed in previous studies, was correlated with the extent of ChE inhibition. Using Karnovsky's method for histochemical staining, the highest staining intensity in control rats was found in the striatum and hippocampus, compared to a low basal activity in the frontal and frontoparietal cortices. In the striatum of drug treated old rats, enzyme inhibition was somewhat greater than that found in young rats. However, in the hippocampus, four to eight hours following MTF administration, the inhibition was greater in young compared to old rats. The differences in the sensitivity of various brain regions towards MTF induced ChE inhibition could not be correlated with the regional variation of MTF functional effects.  相似文献   

19.
Old (28 months) male Wistar rats were treated chronically for two weeks with ginsenoside Rg1 or with vehicle delivered via sc implanted Alzet mini-pumps (rate of ginsenoside release 2.4 micrograms/0.5 microliter/h). The number of Type 1 corticosterone-preferring receptor sites (CR) and Type 2 glucocorticoid receptors (GR) was measured in the cytosol of hippocampus tissue of rat brain with an in vitro binding assay. In old rats the Bmax of Type 1 CR and Type 2 GR was reduced by 51.5% and 28.3% respectively. Following the two week treatment with Rg1 the Bmax of Type 1 CR increased by 60% and a receptor concentration was reached which was 21% lower than that observed in the young control animals. Minor differences in affinity of steroid binding to both receptor systems were observed in the groups of rats. The possible binding of ginsenosides to brain corticosteroid receptors in vitro was investigated as well. The inclusion of a 500 fold molar excess of Rg1 in hippocampus cytosol did not displace 3H-corticosterone from its soluble receptor sites. The affinity of Rg1 with these sites in vitro is therefore negligible. In conclusion, the binding capacity of Type 1 CR and Type 2 GR is reduced in the hippocampal brain region of aged rats. Upon chronic infusion of ginsenoside Rg1, only Type 1 CR capacity is restored towards the level observed in young control animals. This finding suggests that in old rats the ginsenoside enhances the CORT signal via Type 1 CR on the function of the hippocampus, which is a limbic brain structure involved in cognition, mood and affect.  相似文献   

20.
Two groups of rats (young and old) were food-deprived for 3 wk and were compared with age-matched fed groups. Final body weight and dry and wet weights of lungs were significantly reduced in both young and old starved rats. As determined by saline volume-pressure (VP) curves, lungs of young starved rats accepted significantly less volume at all pressure levels compared with lungs of young fed rats. When expressed as a percent of maximum lung volume, the VP curve in young starved rats was significantly shifted upward at low lung volumes. In the old rats, the VP curves were similar in fed and starved rats. Total lung content of protein, DNA, crude connective tissue, hydroxyproline, and elastin were significantly reduced in young starved compared with young fed rats, whereas in old starved rats only protein and DNA contents were lower than those in old fed animals. It appears that in rapidly growing young rats starvation leads to growth retardation, loss of connective tissue components, and possibly reduction in tissue elastic forces at low lung volumes, whereas starvation has no significant effects on lung mechanics and connective tissue in old rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号