首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Calcium alginate–starch hybrid gel was employed as an enzyme carrier both for surface immobilization and entrapment of bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase retained 52% of the initial activity while surface immobilized and glutaraldehyde crosslinked enzyme showed 63% activity. A comparative stability of both forms of immobilized bitter gourd peroxidase was investigated against pH, temperature and chaotropic agent; like urea, heavy metals, water-miscible organic solvents, detergent and inhibitors. Entrapped peroxidase was significantly more stable as compared to surface immobilized form of enzyme. The pH and temperature-optima for both immobilized preparations were the same as for soluble bitter gourd peroxidase. Entrapped crosslinked concanavalin A–bitter gourd peroxidase showed 75% of the initial activity while the surface immobilized and crosslinked bitter gourd peroxidase retained 69% of the original activity after its seventh repeated use.  相似文献   

2.
The aim of this study was to evaluate the enzymatic action of partially purified bitter gourd peroxidase for the degradation/decolorization of complex aromatic structures. Twenty-one dyes, with a wide spectrum of chemical groups, currently being used by the textile and other important industries have been selected for the study. Here, for the first time we have shown peroxidases from Momordica charantia (300 EU/gm of vegetable) to be highly effective in decolorizing industrially important dyes. Dye solutions, containing 50-200 mg dye/l, were used for the treatment with bitter gourd peroxidase (specific activity of 99.0 EU/mg protein). M. charantia peroxidases were able to decolorize most of the textile dyes by forming insoluble precipitate. When the textile dyes were treated with increasing concentration of enzyme, it was observed that greater fraction of the color was removed but four out of eight reactive dyes were recalcitrant to decolorization by bitter gourd peroxidase. Step-wise addition of enzyme to the decolorizing reaction mixture at the interval of 1h further enhanced the dye decolorization. The rate of decolorization was enhanced when the dyes were incubated with fixed quantity of enzyme for increasing times. Decolorization of non-textile dyes resulted in the degradation and removal of dyes from the solution without any precipitate formation. Decolorization rate was drastically increased when the textile and other industrially important non-textile dyes were treated with bitter gourd peroxidase in presence of 1.0 mM 1-hydroxybenzotriazole. Complex mixtures of dyes were prepared by taking three to four reactive textile and non-textile dyes in equal proportions. Each mixture was decolorized by more than 80% when treated with the enzyme in presence of 1.0 mM 1-hydroxybenzotriazole. Our data suggest that the peroxidase/mediator system is an effective biocatalyst for the treatment of effluents containing recalcitrant dyes from textile, dye manufacturing, dyeing and printing industries.  相似文献   

3.
Polyclonal antibody bound Sepharose 4B support has been exploited for the immobilization of bitter gourd peroxidase directly from ammonium sulphate precipitated proteins. Immunoaffinity immobilized bitter gourd peroxidase exhibited high yield of immobilization. IgG-Sepharose 4B bound bitter gourd peroxidase showed a higher stability against heat, chaotropic agents (urea and guanidinium chloride), detergents (cetyl trimethyl ammonium bromide and Surf Excel), proteolytic enzyme (trypsin) and water-miscible organic solvents (propanol, THF and dioxane). The activity of immobilized bitter gourd peroxidase was significantly enhanced in the presence of cetyl trimethyl ammonium bromide and after treatment with trypsin as compared to soluble enzyme.  相似文献   

4.
The possible role of carbohydrate moieties in the stabilization of proteins has been investigated by using bitter gourd peroxidase as a model system. A comparative study of glycosylated and non-glycosylated isoenzymes of bitter gourd peroxidase was performed at various temperatures, pH, water-miscible organic solvents, detergents and chaotropic agent like urea. The pH-optima and temperature-optima of both glycosylated and non-glycosylated isoforms of bitter gourd peroxidase remained unchanged. The probes employed were changes in the enzyme activity and fluorescence. The glycosylated form of peroxidase retained greater fraction of enzyme activity against the exposure caused by various physical and chemical denaturants. The unfolding of both forms of enzyme in the presence of high urea concentrations, studied by fluorescence, indicated greater perturbations in the conformation of non-glycosylated preparation. The different properties examined thus indicated that glycosylation plays an important role in the stabilization of native conformation of proteins against the inactivation caused by various types of denaturants.  相似文献   

5.
Here, the role of bitter gourd peroxidase has been investigated for the treatment of water contaminated with aromatic amines. Most of the aromatic amines were recalcitrant to the action of bitter gourd peroxidase. However, these aromatic amines were oxidized by bitter gourd peroxidase in the presence of a redox mediator, o-dianisidine HCl. The maximum oxidation of aniline was found to be in the buffer of pH 5.0 at 40 °C in the presence of 0.5 mM H2O2 and 0.15 mM o-dianisidine HCl. Aromatic amines oxidized and removed from wastewater were 65% aniline, 50% m-toluidine, 86% m-chloroaniline, 54% p-aminobenzoic acid, 61% diphenylamine and 95% N,N-dimethylaniline. Benzidine and p-nitroaniline were recalcitrant to the action of this enzyme even in the presence of o-dianisidine HCl. Complex mixtures of aromatic amines were treated by bitter gourd peroxidase. These mixtures were removed to varying extent, mixtures A, B and C were oxidized to 59%, 56% and 62%, respectively. Mixtures D, E and F were marginally oxidized to 30%, 14% and 16%, respectively.  相似文献   

6.
A novel peroxidase isolated from a local chick pea (Cicer arietinum L.) cultivar (Balksar 2000) was purified by means of ammonium sulfate precipitation, DEAE-cellulose chromatography and two runs on gel filtration. The purified enzyme has a specific activity of 2045 U/mg with 17 % activity recovery. The molecular mass of the enzyme was estimated to be 39 kDa by SDS-polyacrylamide gel electrophoresis. Optimum pH and temperature of the enzyme were 5.5 and 45 degrees C respectively. The thermal denaturation of local chick pea peroxidase was studied in aqueous solution at temperatures ranging from 45 degrees C to 65 degrees C. The temperature of 50% inactivation of the enzyme was found to be 68 degrees C. The enthalpy (DeltaH*) and free energy (DeltaG*) of thermal denaturation of chick pea peroxidase were 101.4 and 103.4 k J/mol respectively at 65 degrees C.Metals like Zn2+, Mn2+, Hg2+, Co2+ and Al3+ slightly inhibited the peroxidase activity while Ca2+, Mg2+ and Ba2+ have no effect on enzyme activity. The high specific activity and thermal stability make chick pea peroxidase an alternative to horseradish peroxidase (HRP) in various applications.  相似文献   

7.
In this study, salt fractionated bitter gourd (Momordica charantia) peroxidase was used for the decolorization of water-insoluble disperse dyes; Disperse Red 17 and Disperse Brown 1. Effect of nine different redox mediators; bromophenol, 2,4-dichlorophenol, guaiacol, 1-hydroxybenzotriazole, m-cresol, quinol, syringaldehyde, violuric acid, and vanillin on decolorization of disperse dyes by bitter gourd peroxidase has been investigated. Among these redox mediators, 1-hydroxybenzotriazole was the most effective mediator for decolorization of both the dyes by peroxidase. Bitter gourd peroxidase (0.36 U/mL) could decolorize Disperse Red 17 maximally 90% in the presence of 0.1 mM 1-hydroxybenzotriazole while Disperse Brown 1 was decolorized 65% in the presence of 0.2 mM 1-hydroxybenzotriazole. Maximum decolorization of these dyes was obtained within 1 h of incubation at pH 3.0 and temperature 40°C. The application of such enzyme plus redox mediator systems may be extendable to other recalcitrant and water insoluble synthetic dyes using novel redox mediators and peroxidases from other new and cheaper sources.  相似文献   

8.
The first ribonuclease (RNase) from the Cytophaga-Flavobacterium-Bacteroides phylum, dominant in the marine environment, and also from the first Bizionia species isolated from the tropics was purified and characterized. Extracellular RNase production occurred when the culture medium contained 5-7% (w/v) NaCl. The 53.0 kDa enzyme was purified 29 folds with a recovery of 4% and specific activity of 630unit/mg protein. The pH and temperature optima are 6.5 and 35 degrees C, respectively and the enzyme retains more than half of its activity (relative to optimal assay conditions) after 1h pre-incubation separately with 5% (w/v) NaCl or from pH 5.0 to 8.5 or at 50 degrees C. Dithiothreitol and beta-mercaptoethanol do not inhibit whereas human placental RNase inhibitor protein halves the RNase activity. While Mg(2+), Ba(2+) and Ca(2+) enhanced the enzyme activity, Fe(2+), Cu(2+) and Hg(2+) inactivated it. This RNase degrades uracil containing nucleic acids only. Our isolate could be a novel renewable source of deoxyribonuclease (DNase)--free RNase enzyme.  相似文献   

9.
以苦瓜枯萎病菌为靶标菌,通过对峙培养试验和发酵滤液抑菌试验对分离自苦瓜根际土壤的放线菌进行筛选。候选菌株0250具有广谱抗真菌活性,根据培养特征、生理生化特性以及与同源性相近的菌株进行平均核苷酸一致性分析,被鉴定为Streptomyces rhizosphaericus,并评估了该菌株在温室和田间对苦瓜的促生长和防治枯萎病效果。结果表明: 链霉菌菌株0250对苦瓜枯萎病菌的平板抑制率为69.2%,对17种植物病原真菌的平板抑制率达64.3%~85.6%;该菌株的菌悬液处理能促进盆栽和田间苦瓜植株根、茎生长发育,提升产量,对苦瓜枯萎病的防病效果分别为66.9%和61.5%。预先用菌株0250菌悬液处理土壤再接种病原菌,对土壤尖镰孢菌数量抑制率达62.1%,显著提高了苦瓜幼苗苯丙氨酸解氨酶、过氧化物酶和β-1,3-葡聚糖酶活性以及根系活力。总之,菌株0250是一株对苦瓜枯萎病具有巨大生防潜力的放线菌资源。  相似文献   

10.
The activity of 4-ene-5 alpha-reductase was assayed in porcine testis homogenates and subcellular fractions, using testosterone as substrate. 'Marker' enzyme activities were utilized to indicate the purity of the subcellular fractions. 4-Ene-5 alpha-reductase activity was associated with the microsomal fraction; there was no activity in the purified nuclear fraction. Enzyme activity was higher in the testes of 6 week old pigs than those of 3 and 17 week old animals, and a range of activity was found. The enzyme was unstable when stored at -20 degrees C but the addition of albumin (0.1%, w/v) or glycerol (20%, v/v) to the buffer and storage at -70 degrees C or in liquid nitrogen ensured that maximal activity was retained for at least 35 days. In addition to 5 alpha-DHT, other 5 alpha-reduced metabolites and 4-androstenedione were formed in this reaction; NADPH was the preferred cofactor, but 40% of the 4-ene-5 alpha-reductase activity was retained when NADH was used. Solubilization of the microsomal enzyme was achieved using sodium citrate (0.1 M); 4-ene-5 alpha-reductase activity was enhanced to greater than 120% and 60% of this activity was in the soluble fraction. The optimum pH and temperature for both soluble and membrane-bound 4-ene-5 alpha-reductase were 6.9 and 32 degrees C, respectively. The mean apparent Km and Vmax were 0.6 mumol/l and 158 pmol/min/mg microsomal protein for the microsomal enzyme and 1.42 mumol/l and 212.0 pmol/min/mg soluble protein for the solubilized 4-ene-5 alpha-reductase. The estimated sedimentation coefficient was 11.6.  相似文献   

11.
An extracellular phosphatase was purified to homogeneity from the entomopathogenic fungus Metarhizium anisopliae with a 41.0% yield. The molecular mass and isoelectric point of the purified enzyme were about 82.5 kDa and 9.5 respectively. The optimum pH and temperature were about 5.5 and 75 degrees C when using O-phospho-L-tyrosine as substrate. The protein displayed high stability in a pH range 3.0-9.5 at 30 degrees C and was remarkably thermostable at 70 degrees C. The purified enzyme showed high activity on O-phospho-L-tyrosine and protein tyrosine phosphatase substrate monophosphate (a specific substrate of protein tyrosine phosphatase). Although one peptide of the phosphatase shared identity with one alkaline phosphatase of Neurospora crassa, its substrate specificity and inhibitor sensitivity indicate that the enzyme is a protein tyrosine phosphatase.  相似文献   

12.
A thermostable aspartase was purified from a thermophile Bacillus sp. YM55-1 and characterized in terms of activity and stability. The enzyme was isolated by a 5-min heat treatment at 75 degrees C in the presence of 11% (w/v) ammonium sulfate and 100 mM aspartate, followed by Q-Sepharose anion-exchange and AF-Red Toyopearl chromatographies. The native molecular weight of aspartase determined by gel filtration was about 200,000, and this enzyme was composed of four identical monomers with molecular weights of 51,000 determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Unlike Escherichia coli aspartase, the enzyme was not activated by the presence of magnesium ion at alkaline pH. At the optimum pH, the Km and Vmax were 28.5 mM and 700 units/mg at 30 degrees C and 32.0 mM and 2200 units/mg at 55 degrees C, respectively. The specific activity was four and three times higher than those of E. coli and Pseudomonas fluorescens enzymes at 30 degrees C, respectively. Eighty percent of the activity was retained after a 60-min incubation at 55 degrees C, and the enzyme was also resistant to chemical denaturants; 80% of the initial specific activity was detected in assay mixtures containing 1.0 M guanidine hydrochloride. The purified enzyme shared a high sequence homology in the N-terminal region with aspartases from other organisms.  相似文献   

13.
A Karmali  L R Santos 《Biochimie》1988,70(10):1373-1377
Peroxidase (Ec 1.11.1.7) was purified from needles of Pinus pinaster to apparent homogeneity by DE-52 cellulose chromatography with a final recovery of enzyme activity of about 85%. The purified enzyme (A402/A275 = 1.05) had a specific activity of about 948 U/mg of protein and ran as a single protein band both on SDS-PAGE and native PAGE with Mr of 37,000 and 151,000, respectively. Both native PAGE and isoelectric focusing gels of the purified enzyme were stained for activity which coincided with the protein band. The pI of the purified enzyme was found to be 3.2 by isoelectric focusing on an ultrathin polyacrylamide gel. The enzyme has an optimum pH of activity of 5.0 and temperature optimum of 30 degrees C. Stability studies of the enzyme as a function of pH and temperature suggest that it is most stable at pH 5.0 and 0-40 degrees C, respectively.  相似文献   

14.
Extracellular phytase from Aspergillus ficuum, a glycoprotein, was purified to homogeneity in 3 column chromatographic steps using ion exchange and chromatofocusing. Results of gel filtration chromatography and SDS-polyacrylamide gel electrophoresis indicated the approximate molecular weight of the native protein to be 85-100-KDa. On the basis of a molecular weight of 85-KDa, the molar extinction coefficient of the enzyme at 280 nm was estimated to be 1.2 X 10(4) M-1 cm-1. The isoelectric point of the enzyme, as deduced by chromatofocusing, was about 4.5. The purified enzyme is remarkably stable at 0 degree C. Thermal inactivation studies have shown that the enzyme retained 40% of its activity after being subjected to 68 degrees C for 10 minutes, and the enzyme exhibited a broad temperature optimum with maximum catalytic activity at 58 degrees C. The Km of the enzyme for phytate and p-nitrophenylphosphate is about 40 uM and 265 uM, respectively, with an estimated turnover number of the enzyme for phytate of 220 per sec. Enzymatic deglycosylation of phytase by Endoglycosidase H lowered the molecular weight of native enzyme from 85-100-KDa to about 76-KDa; the digested phytase still retained some carbohydrate as judged by positive periodic acid-Schiff reagent staining of the electrophoresed protein. Immunoblotting of the phytase with monoclonal antibody 7H10 raised against purified native enzyme recognized not only native but also partially deglycosylated protein.  相似文献   

15.
Bull seminal-plasma hyaluronidase was purified 180-fold by chromatography on concanvalin A-Sepharose, heparin Sepharose, Sephadex G-200 and Sephacryl S-200. With hyaluronic acid as the substrate, the specific activity and turnover number of purified hyaluronidase were 3.63 mumol/min per mg (104000 National Formulary units/mg of protein) and 214 min-1 (mol of product formed/mol of enzyme per min) respectively. Polyacrylamide-gel electrophoresis indicated that the purified enzyme migrated as a single band on 7.5 and 10% (w/v) gels at pH 4.3 and 5.3. Bull seminal-plasma hyaluronidase was markedly inhibited by hydroxylamine, phenylhydrazine and semicarbazide. Purified hyaluronidase (1.25 munits; 1 unit = 1 mumol of N-acetylglucosamine liberated/min at 37 degrees C) dispersed the cumulus clot of rabbit ova in 1 h at 22 degrees C.  相似文献   

16.
Salicylate monooxygenase (EC: 1.14.13.1) has been produced and purified from Pseudomonas cepacia ATCC 29351 which has the ability to utilise salicylate as a sole carbon source. The bacterium was grown on a defined medium containing 2% (w/v) casamino acids and 0.15% (w/v) yeast extract at 25 degrees C; salicylate monooxygenase production was induced by the presence of up to 0.7% (w/v) sodium salicylate, to a level of approximately 2% of the soluble cell protein. The enzyme was purified over 50-fold, with a recovery of about 40%, by a combination of ion exchange and hydrophobic interaction chromatography. The purified enzyme had a specific activity of 14-15 U mg-1 protein and was essentially homogeneous.  相似文献   

17.
Bacillus stearothermophilus T-6 produces an extracellular xylanase that was shown to optimally bleach pulp at pH 9 and 65 degrees C. The enzyme was purified and concentrated in a single adsorption step onto a cation exchanger and is made of a single polypeptide with an apparent M(r) of 43,000 (determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis). Xylanase T-6 is an endoxylanase that completely degrades xylan to xylose and xylobiose. The pIs of the purified protein were 9 and 7 under native and denaturing conditions, respectively. The optimum activity was at pH 6.5; however, 60% of the activity was still retained at pH 10. At 65 degrees C and pH 7, the enzyme was stable for more than 10 h; at 65 degrees C and pH 9, the half-life of the enzyme was approximately 6 h. Kinetic experiments at 55 degrees C gave Vmax and Km values of 288 U/mg and 1.63 mg/ml, respectively. The enzyme had no apparent requirement for cofactors, and its activity was strongly inhibited by Zn2+, Cd2+, and Hg2+. Xylan completely protected the protein from inactivation by N-bromosuccinimide. The N-terminal sequence of the first 45 amino acids of the enzyme showed high homology with the N-terminal region of xylanase A from the alkalophilic Bacillus sp. strain C-125.  相似文献   

18.
The enzyme beta-galactosidase was purified from a cold-adapted organism isolated from Antarctica. The organism was identified as a psychotrophic Pseudoalteromonas sp. The enzyme was purified with high yields by a rapid purification scheme involving extraction in an aqueous two-phase system followed by hydrophobic interaction chromatography and ultrafiltration. The beta-galactosidase was optimally active at pH 9 and at 26 degrees C when assayed with o-nitrophenyl-beta-D-galactopyranoside as substrate for 2 min. The enzyme activity was highly sensitive to temperature above 30 degrees C and was undetectable at 40 degrees C. The cations Na+, K+, Mg2+ and Mn2+ activated the enzyme while Ca2+, Hg2+, Cu2+ and Zn2+ inhibited activity. The shelf life of the pure enzyme at 4 degrees C was significantly enhanced in the presence of 0.1% (w/v) polyethyleneimine. The pure beta-galactosidase was also evaluated for lactose hydrolysis. More than 50% lactose hydrolysis was achieved in 8 h in buffer at an enzyme concentration of 1 U/ml, and was increased to 70% in the presence of 0.1% (w/v) polyethyleneimine. The extent of lactose hydrolysis was 40-50% in milk. The enzyme could be immobilized to Sepharose via different chemistries with 60-70% retention of activity. The immobilized enzyme was more stable and its ability to hydrolyze lactose was similar to that of the soluble enzyme.  相似文献   

19.
Cold-active beta-galactosidase from Arthrobacter psychrolactophilus strain F2 was overexpressed in Escherichia coli using the Cold expression system and the recombinant enzyme, rBglAp, was characterized. The purified rBglAp exhibited similar enzymatic properties to the native enzyme, e.g., (i) it had high activity at 0 degrees C, (ii) its optimum temperature and pH were 10 degrees C and 8.0, respectively, and (iii) it was possible to rapidly inactivate the rBglAp at 50 degrees C in 5 min. Moreover, rBglAp was able to hydrolyze both ONPG and lactose with K(m) values of 2.7 and 42.1mM, respectively, at 10 degrees C. One U of rBglAp could hydrolyze about 70% of the lactose in 1 ml of milk in 24h, and the enzyme produced trisaccharide from lactose. We conclude that rBglAp is a cold-active enzyme that is extremely heat labile and has significant potential application to the food industry.  相似文献   

20.
Protein precipitate of cell-free dialysate of extracellular inulinase (2,1-beta-fructan fructanohydrolase, EC 3.2.1.7) of A. alternata was maximally obtained by methanol. Such protein was fractionated by using 2-step column chromatography on Sephadex G150 and DEAE-cellulose. The partially purified enzyme had activity of 81 x 10(3) U/mg protein, with a yield of 69% of the original activity and the fold of purification was 62. Optimum temperature and pH for the activity of the purified enzyme were found to be 55 degrees C and 4.5, respectively. The enzyme was found to be stable up to 55 degrees C and in pH range of 4 to 5. Ba2+ and Ca2+ were found to stimulate the enzyme activity while Cu2+, Fe3+, Hg2+, and iodoacetate were recorded as strong inhibitors. T(1/2) of the enzyme was estimated to be two weeks and its apparent Km was calculated to be 0.066 M. The enzyme recorded hydrolyzing activity against sucrose and raffinose recording I/S ratio of 0.50. Molecular mass of the enzyme preparation was estimated by gel filtration and found to be 115 +/- 5 kDa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号