首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 277 毫秒
1.
Magnetic orientation and magnetoreception in birds and other animals   总被引:15,自引:0,他引:15  
Animals use the geomagnetic field in many ways: the magnetic vector provides a compass; magnetic intensity and/or inclination play a role as a component of the navigational map, and magnetic conditions of certain regions act as sign posts or triggers, eliciting specific responses. A magnetic compass is widespread among animals, magnetic navigation is indicated e.g. in birds, marine turtles and spiny lobsters and the use of magnetic sign posts has been described for birds and marine turtles. For magnetoreception, two hypotheses are currently discussed, one proposing a chemical compass based on a radical pair mechanism, the other postulating processes involving magnetite particles. The available evidence suggests that birds use both mechanisms, with the radical pair mechanism in the right eye providing directional information and a magnetite-based mechanism in the upper beak providing information on position as component of the map. Behavioral data from other animals indicate a light-dependent compass probably based on a radical pair mechanism in amphibians and a possibly magnetite-based mechanism in mammals. Histological and electrophysiological data suggest a magnetite-based mechanism in the nasal cavities of salmonid fish. Little is known about the parts of the brain where the respective information is processed.  相似文献   

2.
鸟类磁感受的生物物理机制研究进展   总被引:1,自引:0,他引:1  
行为学实验表明,许多鸟类能够感受到地磁信息,并利用地磁信息完成迁徙或归巢。地磁场信息能提供可靠导航信息,磁力线可提供罗盘信息,而磁场强度和倾角可提供位置信息。文章介绍了鸟类磁感受机制的两种重要假说——基于磁铁矿的磁感受假说和化学磁感受假说,阐明了两种假说的理论原理及实验证据,对地磁信息传导神经通路与处理脑区做了评述,并展望了其发展方向。  相似文献   

3.
Loggerhead sea turtles (Caretta caretta) derive both directional and positional information from the Earths magnetic field, but the mechanism underlying magnetic field detection in turtles has not been determined. One hypothesis is that crystals of biogenic, single-domain magnetite provide the physical basis of the magnetic sense. As a first step toward determining if magnetite is involved in sea turtle magnetoreception, hatchling loggerheads were exposed to pulsed magnetic fields (40 mT, 4 ms rise time) capable of altering the magnetic dipole moment of biogenic magnetite crystals. A control group of turtles was treated identically but not exposed to the pulsed fields. Both groups of turtles subsequently oriented toward a light source, implying that the pulsed fields did not disrupt the motivation to swim or the ability to maintain a consistent heading. However, when swimming in darkness under conditions in which turtles normally orient magnetically, control turtles oriented significantly toward the offshore migratory direction while those that were exposed to the magnetic pulses did not. These results are consistent with the hypothesis that at least part of the sea turtle magnetoreception system is based on magnetite. In principle, a magnetite-based magnetoreception system might be involved in detecting directional information, positional information, or both.  相似文献   

4.

Background

European robins, Erithacus rubecula, show two types of directional responses to the magnetic field: (1) compass orientation that is based on radical pair processes and lateralized in favor of the right eye and (2) so-called 'fixed direction' responses that originate in the magnetite-based receptors in the upper beak. Both responses are light-dependent. Lateralization of the 'fixed direction' responses would suggest an interaction between the two magnetoreception systems.

Results

Robins were tested with either the right or the left eye covered or with both eyes uncovered for their orientation under different light conditions. With 502 nm turquoise light, the birds showed normal compass orientation, whereas they displayed an easterly 'fixed direction' response under a combination of 502 nm turquoise with 590 nm yellow light. Monocularly right-eyed birds with their left eye covered were oriented just as they were binocularly as controls: under turquoise in their northerly migratory direction, under turquoise-and-yellow towards east. The response of monocularly left-eyed birds differed: under turquoise light, they were disoriented, reflecting a lateralization of the magnetic compass system in favor of the right eye, whereas they continued to head eastward under turquoise-and-yellow light.

Conclusion

'Fixed direction' responses are not lateralized. Hence the interactions between the magnetite-receptors in the beak and the visual system do not seem to involve the magnetoreception system based on radical pair processes, but rather other, non-lateralized components of the visual system.  相似文献   

5.
A model for photoreceptor-based magnetoreception in birds   总被引:2,自引:0,他引:2       下载免费PDF全文
A large variety of animals has the ability to sense the geomagnetic field and utilize it as a source of directional (compass) information. It is not known by which biophysical mechanism this magnetoreception is achieved. We investigate the possibility that magnetoreception involves radical-pair processes that are governed by anisotropic hyperfine coupling between (unpaired) electron and nuclear spins. We will show theoretically that fields of geomagnetic field strength and weaker can produce significantly different reaction yields for different alignments of the radical pairs with the magnetic field. As a model for a magnetic sensory organ we propose a system of radical pairs being 1) orientationally ordered in a molecular substrate and 2) exhibiting changes in the reaction yields that affect the visual transduction pathway. We evaluate three-dimensional visual modulation patterns that can arise from the influence of the geomagnetic field on radical-pair systems. The variations of these patterns with orientation and field strength can furnish the magnetic compass ability of birds with the same characteristics as observed in behavioral experiments. We propose that the recently discovered photoreceptor cryptochrome is part of the magnetoreception system and suggest further studies to prove or disprove this hypothesis.  相似文献   

6.
Iron-rich structures have been described in the beak of homing pigeons, chickens and several species of migratory birds and interpreted as magnetoreceptors. Here, we will briefly review findings associated with these receptors that throw light on their nature, their function and their role in avian navigation. Electrophysiological recordings from the ophthalmic nerve, behavioral studies and a ZENK-study indicate that the trigeminal system, the nerves innervating the beak, mediate information on magnetic changes, with the electrophysiological study suggesting that these are changes in intensity. Behavioral studies support the involvement of magnetite and the trigeminal system in magnetoreception, but clearly show that the inclination compass normally used by birds represents a separate system. However, if this compass is disrupted by certain light conditions, migrating birds show ‘fixed direction’ responses to the magnetic field, which originate in the receptors in the beak. Together, these findings point out that there are magnetite-based magnetoreceptors located in the upper beak close to the skin. Their natural function appears to be recording magnetic intensity and thus providing one component of the multi-factorial ‘navigational map’ of birds.  相似文献   

7.
In view of the finding that cryptochrome 1a, the putative receptor molecule for the avian magnetic compass, is restricted to the ultraviolet single cones in European Robins, we studied the orientation behaviour of robins and Australian Silvereyes under monochromatic ultraviolet (UV) light. At low intensity UV light of 0.3 mW/m2, birds showed normal migratory orientation by their inclination compass, with the directional information originating in radical pair processes in the eye. At 2.8 mW/m2, robins showed an axial preference in the east–west axis, whereas silvereyes preferred an easterly direction. At 5.7 mW/m2, robins changed direction to a north–south axis. When UV light was combined with yellow light, robins showed easterly ‘fixed direction’ responses, which changed to disorientation when their upper beak was locally anaesthetised with xylocaine, indicating that they were controlled by the magnetite-based receptors in the beak. Orientation under UV light thus appears to be similar to that observed under blue, turquoise and green light, albeit the UV responses occur at lower light levels, probably because of the greater light sensitivity of the UV cones. The orientation under UV light and green light suggests that at least at the level of the retina, magnetoreception and vision are largely independent of each other.  相似文献   

8.
A model of magnetoreception proposes that the avian magnetic compass is based on a radical pair mechanism, with photon absorption leading to the formation of radical pairs. Analyzing the predicted light dependency by testing migratory birds under monochromatic lights, we found that the responses of birds change with increasing intensity. The analysis of the orientation of European robins under 502 nm turquoise light revealed two types of responses depending on light intensity: under a quantal flux of 8.10(15) quanta m(-2) s(-1), the birds showed normal migratory orientation in spring as well as in autumn, relying on their inclination compass. Under brighter light of 54.10(15) quanta m(-2) s(-1), however, they showed a "fixed" tendency toward north that did not undergo the seasonal change and proved to be based on magnetic polarity, not involving the inclination compass. When birds were exposed to a weak oscillating field, which specifically interferes with radical pair processes, the inclination compass response was disrupted, whereas the response to magnetic polarity remained unaffected. These findings indicate that the normal inclination compass used for migratory orientation is based on a radical-pair mechanism, whereas the fixed direction represents a novel type of light-dependent orientation based on a mechanism of a different nature.  相似文献   

9.
地磁场影响着自然界的生命活动,候鸟、果蝇等就利用地磁场进行导航迁徙.研究表明,鸟类的视网膜中存在一种蛋白名为隐花色素,作为最可能的磁感应分子和光受体. 该蛋白能够在光照条件下,产生自由基对,进行光化学转换.人体内也含有隐花色素蛋白,该蛋白也具有磁感应潜能.本文从地磁感应现象入手,结合最新的研究进展,重点介绍了隐花色素的结构、分类、光反应机制,并且根据光依赖的自由基假说就鸟类感应地磁场这一现象进行了简要阐述,同时对隐花色素研究前景进行了探讨.  相似文献   

10.
The magnetic compass of birds is embedded in the visual system and it has been hypothesized that the primary sensory mechanism is based on a radical pair reaction. Previous models of magnetoreception have assumed that the radical pair-forming molecules are rigidly fixed in space, and this assumption has been a major objection to the suggested hypothesis. In this article, we investigate theoretically how much disorder is permitted for the radical pair-forming, protein-based magnetic compass in the eye to remain functional. Our study shows that only one rotational degree of freedom of the radical pair-forming protein needs to be partially constrained, while the other two rotational degrees of freedom do not impact the magnetoreceptive properties of the protein. The result implies that any membrane-associated protein is sufficiently restricted in its motion to function as a radical pair-based magnetoreceptor. We relate our theoretical findings to the cryptochromes, currently considered the likeliest candidate to furnish radical pair-based magnetoreception.  相似文献   

11.
Previous experiments have shown that a short, strong magnetic pulse caused migratory birds to change their headings from their normal migratory direction to an easterly direction in both spring and autumn. In order to analyse the nature of this pulse effect, we subjected migratory Australian silvereyes, Zosterops lateralis, to a magnetic pulse and tested their subsequent response under different magnetic conditions. In the local geomagnetic field, the birds preferred easterly headings as before, and when the horizontal component of the magnetic field was shifted 90 degrees anticlockwise, they altered their headings accordingly northwards. In a field with the vertical component inverted, the birds reversed their headings to westwards, indicating that their directional orientation was controlled by the normal inclination compass. These findings show that although the pulse strongly affects the magnetite particles, it leaves the functional mechanism of the magnetic compass intact. Thus, magnetite-based receptors seem to mediate magnetic 'map'-information used to determine position, and when affected by a pulse, they provide birds with false positional information that causes them to change their course.  相似文献   

12.
Ahmad M  Galland P  Ritz T  Wiltschko R  Wiltschko W 《Planta》2007,225(3):615-624
Cryptochromes are blue-light absorbing photoreceptors found in many organisms where they have been involved in numerous growth, developmental, and circadian responses. In Arabidopsis thaliana, two cryptochromes, CRY1 and CRY2, mediate several blue-light-dependent responses including hypocotyl growth inhibition. Our study shows that an increase in the intensity of the ambient magnetic field from 33–44 to 500 μT enhanced growth inhibition in A. thaliana under blue light, when cryptochromes are the mediating photoreceptor, but not under red light when the mediating receptors are phytochromes, or in total darkness. Hypocotyl growth of Arabidopsis mutants lacking cryptochromes was unaffected by the increase in magnetic intensity. Additional cryptochrome-dependent responses, such as blue-light-dependent anthocyanin accumulation and blue-light-dependent degradation of CRY2 protein, were also enhanced at the higher magnetic intensity. These findings show that higher plants are sensitive to the magnetic field in responses that are linked to cryptochrome-dependent signaling pathways. Because cryptochromes form radical pairs after photoexcitation, our results can best be explained by the radical-pair model. Recent evidence indicates that the magnetic compass of birds involves a radical pair mechanism, and cryptochrome is a likely candidate for the avian magnetoreception molecule. Our findings thus suggest intriguing parallels in magnetoreception of animals and plants that appear to be based on common physical properties of photoexcited cryptochromes.  相似文献   

13.
The avian magnetic compass has been well characterized in behavioral tests: it is an “inclination compass” based on the inclination of the field lines rather than on the polarity, and its operation requires short-wavelength light. The “radical pair” model suggests that these properties reflect the use of specialized photopigments in the primary process of magnetoreception; it has recently been supported by experimental evidence indicating a role of magnetically sensitive radical-pair processes in the avian magnetic compass. In a multidisciplinary approach subjecting migratory birds to oscillating fields and using their orientation responses as a criterion for unhindered magnetoreception, we identify key features of the underlying receptor molecules. Our observation of resonance effects at specific frequencies, combined with new theoretical considerations and calculations, indicate that birds use a radical pair with special properties that is optimally designed as a receptor in a biological compass. This radical pair design might be realized by cryptochrome photoreceptors if paired with molecular oxygen as a reaction partner.  相似文献   

14.
15.
Recent advances have brought new insight into the physiological mechanisms that enable birds and other animals to use magnetic fields for orientation. Many birds seem to have two magnetodetection senses, one based on magnetite near the beak and one based on light-dependent radical-pair processes in the bird's eye(s). Among the most exciting recent results are: first, behavioural responses of birds experiencing oscillating magnetic fields. Second, the occurrence of putative magnetosensory molecules, the cryptochromes, in the eyes of migratory birds. Third, detection of a brain area that integrates specialised visual input at night in night-migratory songbirds. Fourth, a putative magnetosensory cluster of magnetite in the upper beak. These and other recent findings have important implications for magnetoreception; however, many crucial open questions remain.  相似文献   

16.
The geomagnetic field is typically about 50 μT (range 20-90 μT). Geomagnetic activity generally decreases by about 4% for the seven days leading up to a full moon, and increases by about 4% after the full moon, lasting for seven days. Animals can clearly detect the changes in magnetic field intensity that occur at full moon, as it has been shown that variations of just a few tens of nT are adequate to form a useful magnetic ‘map’. We think that moonlight increases the sensitivity of animals' magnetoreception because the radical pair model predicts that magnetoreception is light dependent. In fact, there have been some reports of changes in the sensitivity of magnetoreception with lunar phase. We propose a hypothesis that animals respond to the full moon because of changes in geomagnetic fields, and that the sensitivity of animals' magnetoreception increases at this time.  相似文献   

17.
The avian magnetic compass was analyzed in bird species of three different orders - Passeriforms, Columbiforms and Galliforms - and in three different behavioral contexts, namely migratory orientation, homing and directional conditioning. The respective findings indicate similar functional properties: it is an inclination compass that works only within a functional window around the ambient magnetic field intensity, it tends to be lateralized in favor of the right eye, and it is wavelength-dependent, requiring light from the short-wavelength range of the spectrum. The underlying physical mechanisms have been identified as radical pair processes, spin-chemical reactions in specialized photopigments. The iron-based receptors in the upper beak do not seem to be involved. The existence of the same type of magnetic compass in only very distantly related bird species suggests that it may have been present already in the common ancestors of all modern birds, where it evolved as an all-purpose compass mechanism for orientation within the home range.  相似文献   

18.
This article reviews phenomena of magnetoreception in plants and provides a survey of the relevant literature over the past 80 years. Plants react in a multitude of ways to geomagnetic fields—strong continuous fields as well as alternating magnetic fields. In the past, physiological investigations were pursued in a somewhat unsystematic manner and no biological advantage of any magnetoresponse is immediately obvious. As a result, most studies remain largely on a phenomenological level and are in general characterised by a lack of mechanistic insight, despite the fact that physics provides several theories that serve as paradigms for magnetoreception. Beside ferrimagnetism, which is well proved for bacterial magnetotaxis and for some cases of animal navigation, two further mechanisms for magnetoreception are currently receiving major attention: (1) the radical-pair mechanism consisting of the modulation of singlet–triplet interconversion rates of a radical pair by weak magnetic fields, and (2) the ion cyclotron resonance mechanism. The latter mechanism centres around the fact that ions should circulate in a plane perpendicular to an external magnetic field with their Lamor frequencies, which can interfere with an alternating electromagnetic field. Both mechanisms provide a theoretical framework for future model-guided investigations in the realm of plant magnetoreception.  相似文献   

19.
In the last decades, it has been demonstrated that many animal species orient in the Earth magnetic field. One of the best-studied examples is the use of the geomagnetic field by migratory birds for orientation and navigation. However, the biophysical mechanism underlying animal magnetoreception is still not understood. One theory for magnetoreception in birds invokes the so-called radical-pair model. This mechanism involves a pair of reactive radicals, whose chemical fate can be influenced by the orientation with respect to the magnetic field of the Earth through Zeeman and hyperfine interactions. The fact that the geomagnetic field is weak, i.e., ∼0.5 G, puts a severe constraint on the radical pair that can establish the magnetic compass sense. For a noticeable change of the reaction yield in a redirected geomagnetic field, the hyperfine interaction has to be as weak as the Earth field Zeeman interaction, i.e., unusually weak for an organic compound. Such weak hyperfine interaction can be achieved if one of the radicals is completely devoid of this interaction as realized in a radical pair containing an oxygen molecule as one of the radicals. Accordingly, we investigate here a possible radical pair-based reaction in the photoreceptor cryptochrome that reduces the protein's flavin group from its signaling state FADH to the inactive state FADH- (which reacts to the likewise inactive FAD) by means of the superoxide radical, O2•-. We argue that the spin dynamics in the suggested reaction can act as a geomagnetic compass and that the very low physiological concentration (nM-μM) of otherwise toxic O2•- is sufficient, even favorable, for the biological function.  相似文献   

20.
Several effects of power‐frequency (50/60 Hz) magnetic fields (PF‐MF) of weak intensity have been hypothesized in animals and humans. No valid mechanism, however, has been proposed for an interaction between PF‐MF and biological tissues and living beings at intensities relevant to animal and human exposure. Here we proposed to consider PF‐MF as disrupters of the natural magnetic signal. Under exposure to these fields, an oscillating field exists that results from the vectorial summation of both the PF‐MF and the geomagnetic field. At a PF‐MF intensity (rms) of 0.5 µT, the peak‐to‐peak amplitude of the axis and/or intensity variations of this resulting field exceeds the related discrimination threshold of magnetoreception (MR) in migrating animals. From our evaluation of the 50/60 Hz responsiveness of the putative mechanisms of MR, single domain particles (Kirschvink's model) appear unable to transduce that oscillating signal. On the contrary, radical pair reactions are able to, as well as interacting multidomain iron–mineral platelets and clusters of superparamagnetic particles (Fleissner/Solov'yov's model). It is, however, not yet known whether the reception of 50/60 Hz oscillations of the natural magnetic signal might be of consequence or not. Bioelectromagnetics 31:371–379, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号