首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Leaves from dark-grown barley (Hordeum vulgare L. var Larker) seedlings grown in the presence and absence of fluridone were used to determine whether or not abscisic acid (ABA) accumulation was necessary for proline to accumulate in wilted tissue. Wilted tissue (polyethylene glycol-treated) leaves from fluridone-grown seedlings did not accumulate ABA but did accumulate proline at a rate that was not different from the non-fluridone-treated leaves. Thus ABA accumulation is not required for wilting-induced proline accumulation in barley leaves. Proline accumulation in wilted leaves from the wilty tomato (Lycopersicon esculentum) mutant, flacca, was compared to that in the wild type, Rheinlands Ruhm. Proline accumulated in wilted leaves from flacca. The rate of accumulation was faster in flacca compared to the rate in the wild type because the wilty mutant wilted faster. ABA accumulated in wilted leaves from the wild type but not in the wilty mutant. This result is a further confirmation that ABA accumulation is not required for wilting-induced proline accumulation. These results are significant in that proline accumulation in barley leaves can be induced independently by any one of three treatments: wilting, ABA, or salt.  相似文献   

2.
3.
A mutant of Nicotiana plumbaginifolia, CKR1, isolated on the basis of its enhanced resistance to cytokinins was found to have a greater tendency to wilt than the wild type (Blonstein et al., 1991, Planta 183, 244–250). Further characterisation has shown that the wiltiness in the mutant is not caused by an insensitivity to abscisic acid (ABA) because the external application of ABA leads to stomatal closure and phenotypic reversion. The basal ABA level in the mutant is < 20% of that in the wild type. Following stress, the ABA level in wild-type leaves increases by approx 9-to 10-fold while the mutant shows only a slight increase. This deficiency in ABA is unlikely to be the consequence of accelerated catabolism as the levels of two major metabolites of ABA, phaseic and dihydrophaseic acid, are also much reduced in the mutant. The qualitative and quantitative distributions of carotenoids, the presumed presursors of ABA, are the same for the leaves of both wild type and mutant. Biosynthesis of ABA at the C15 level was investigated by feeding xanthoxin (Xan) to detached leaves. Wild-type leaves convert between 9–19% of applied Xan to ABA while the mutant converts less than 1%. The basal level of trans-ABA-alcohol (t-ABA-alc) is 3-to 10-fold greater in the mutant and increases by a further 2.5-to 6.0-fold after stress. This indicates that the lesion in the wilty mutant of N. plumbaginifolia affects the conversion of ABA-aldehyde to ABA, as in the flacca and sitiens mutants of tomato and the droopy mutant of potato (Taylor et al., 1988, Plant Cell Environ. 11, 739–745; Duckham et al., 1989, J. Exp. Bot. 217, 901–905). Wild-type tomato and N. plumbaginifolia leaves can convert trans-Xan into t-ABA-alc, and Xan into ABA, while those of flacca and the wilty N. plumbaginifolia mutant convert both Xan and t-Xan to t-ABA-alc.  相似文献   

4.
The flacca mutant in tomato (Lycopersicon esculentum Mill. cv Rheinlands Ruhm) was employed to examine the effects of a relatively constant diurnal water stress on leaf growth and water relations. As the mutant is deficient in abscisic acid (ABA) and can be phenotypically reverted to the wild type by applications of the growth substance, inferences can be made concerning the involvement of ABA in responses to water stress. Water potential and turgor were lower in leaves of flacca than of Rheinlands Ruhm, and were increased by ABA treatment. ABA decreased transpiration rates by causing stomatal closure and also increased the hydraulic conductance of the sprayed plants. Osmotic adjustment did not occur in flacca plants despite the daily leaf water deficits. Stem elongation was inhibited by ABA, but leaf growth was promoted. It is concluded that, in some cases, ABA may promote leaf growth via its effect on leaf water balance.  相似文献   

5.
Extracts prepared from the turgid and water-stressed leaves of wild-type tomato (Lycopersicon esculentum Mill cv Ailsa Craig) and the wilty mutants sitiens, notabilis, and flacca were tested for their ability to metabolize xanthoxin to ABA. Extracts from wild type and notabilis converted xanthoxin at similar rates, while extracts from sitiens and flacca showed little or no activity. We also observed no activity when extracts of sitiens and flacca were mixed. Similar results were obtained when ABA aldehyde was used as a substrate, in that extracts from wild type and notabilis were equally active, but extracts from flacca and sitiens showed little activity. None of the tomato extracts showed significant activity with xanthoxin acid, xanthoxin alcohol, or ABA-1′,4-′Trans-diol as substrates. Extracts from bean leaves (Phaseolus vulgaris L. cv Blue Lake) were similar to the wild-type tomato extracts in their ability to convert the various substrates to ABA, although excised bean leaves did convert ABA-1′,4′-trans-diol and xanthoxin alcohol to ABA when these substances were taken up through the petiole. These results are consistent with a role for xanthoxin as a normal intermediate on the ABA biosynthetic pathway, and they suggest that ABA aldehyde is the final ABA precursor.  相似文献   

6.
In this study, we examined the physiological mechanisms in the responses of Arabidopsis mutant sensitive to ABA and drought 2–1 (sad2-1) to ultraviolet-B radiation (UVB) treatments. The effects of enhanced UVB radiation on plant growth, concentration of UV-absorbing compounds, photosynthesis, endogenous ABA and antioxidant system were investigated in two types of Arabidopsis thaliana — the mutant sad2-1 and the wild type (WT, C24). Results indicated that, under UVB radiation, mutant sad2-1 showed a higher resistance than C24 through accumulating more UV absorption materials, maintaining bio-membrane balance and photosynthesis efficiency, enhancing endogenous ABA content and activating ROS scavenging enzymes. It can be postulated that ABA might participate in a complex signal crosstalk in increasing the tolerance of UVB.  相似文献   

7.
There is an increased accumulation of message for the catalytic (70-kDa) subunit of the tonoplast H+-ATPase in leaves of tomato (Lycopersicon esculentum L.) plants responding to NaCl. To determine if abscisic acid (ABA) mediates this response, message accumulation was examined in treatments designed to separate exposure to NaCl from increases in endogenous ABA. Under three different experimental conditions, salt-induced changes in the accumulation of 70-kDa message were unrelated to any change in endogenous ABA. The results were as follows: (i) under drought stress, plants accumulated levels of ABA similar to those measured in salt-treated plants; however, no increase in 70-kDa subunit message was observed; (ii) the ABA-deficient mutant sitiens exhibited an increased accumulation of message despite the absence of NaCl-induced accumulation of ABA; and (iii) the inhibitor of general isoprenoid biosynthesis, Lovastatin, blocked NaCl-induced accumulation of ABA but did not alter NaCl-induced accumulation of message. In addition to these three experimental responses, application of exogenous ABA increased endogenous ABA levels without any comparable increase in message accumulation. Based on these results, it is concluded that ABA does not mediate the NaCl-induced accumulation of 70-kDa subunit tonoplast H+ -ATPase message accumulation in tomato.  相似文献   

8.
Plant responses to elevated CO2 and high temperature are critically regulated through a complex network of phytohormones and redox homeostasis. However, the involvement of abscisic acid (ABA) in plant adaptation to heat stress under elevated CO2 conditions has not been thoroughly studied. This study investigated the interactive effects of elevated CO2 (800 μmol·mol?1) and heat stress (42 °C for 24 h) on the endogenous level of ABA and the cellular redox state of two genotypes of tomato with different ABA biosynthesis capacities. Heat stress significantly decreased maximum photochemical efficiency of PSII (Fv/Fm) and leaf water potential, but also increased levels of malondialdehyde (MDA) and electrolyte leakage (EL) in both genotypes. Heat‐induced damage was more severe in the ABA‐deficient mutant notabilis (not) than in its parental cultivar Ailsa Craig (Ailsa), suggesting that a certain level of endogenous ABA is required to minimise the heat‐induced oxidative damage to the photosynthetic apparatus. Irrespective of genotype, the enrichment of CO2 remarkably stimulated Fv/Fm, MDA and EL in heat‐stressed plants towards enhanced tolerance. In addition, elevated CO2 significantly strengthened the antioxidant capacity of heat‐stressed tomato seedlings towards a reduced cellular redox state for a prolonged period, thereby mitigating oxidative stress. However, elevated CO2 and heat stress did not alter the endogenous level of ABA or the expression of its biosynthetic gene NCED2 in either genotype, indicating that ABA is not involved in elevated CO2‐induced heat stress alleviation. The results of this study suggest that elevated CO2 alleviated heat stress through efficient regulation of the cellular redox poise in an ABA‐independent manner in tomato plants.  相似文献   

9.
Bray EA 《Plant physiology》1988,88(4):1210-1214
Drought stress triggers abscisic acid (ABA) biosynthesis resulting in ABA accumulation. The ABA-deficient tomato mutant, flacca (Lycopersicon esculentum Mill. cv Ailsa Craig), does not synthesize ABA in response to drought stress. This mutant has been used to distinguish polypeptides and in vitro translation products that are synthesized during drought stress in response to elevated ABA levels from those that are induced directly by altered water relations. A set of polypeptides and in vitro translation products was synthesized during drought stress in the wild type. These polypeptides and in vitro translation products were synthesized to a lesser extent in the drought-stressed ABA-deficient mutant. Treatment of flacca with ABA resulted in the synthesis of the drought-stress-induced polypeptides and in vitro translation products. These results support the hypothesis that many of the polypeptides that are synthesized during drought are regulated by alterations in ABA concentration. Similarly, the mRNA population was altered by ABA during drought stress.  相似文献   

10.
11.
Histone deacetylation catalyzed by histone deacetylases is an important type of histone modification. Histone deacetylases affect various processes of plant development and involve in responding to hormones and biotic and abiotic stresses. Here, we report a tomato PRD3/HDA1 histone deacetylase gene, SlHDA5, which is expressed ubiquitously in different tissues and development stages. Expression profiles in hormone treatments showed that SlHDA5 was induced by abscisic acid (ABA) and methyl jasmonate (MeJA). Seedlings growth of SlHDA5-RNAi lines were more inhibited on the medium containing salt compared with wild type (WT). Under salt stress, chlorophyll in mature leaves degraded earlier in transgenic leaves than that in WT, and transgenic plants displayed wilting earlier and more severe than WT. After drought treatment, transgenic plants wilted and dehydrated earlier than WT, which was confirmed by lower water and chlorophyll content, and higher malondialdehyde (MDA) content in transgenic plants manifesting that the tolerance of transgenic plants to drought receded. Under the treatment of ABA, root length of transgenic seedlings was more strongly repressed by contrast with WT, suggesting repression of SlHDA5 increased seedling sensibility to ABA. Our study indicated that silencing of SlHDA5 resulted in decreasing tolerance to salt, drought, and ABA.  相似文献   

12.
13.
Experiments were performed on three abscisic acid (ABA)-deficient tomato (Lycopersicon esculentum Mill.) mutants, notabilis, flacca, and sitiens, to investigate the role of ABA and jasmonic acid (JA) in the generation of electrical signals and Pin2 (proteinase inhibitor II) gene expression. We selected these mutants because they contain different levels of endogenous ABA. ABA levels in the mutant sitiens were reduced to 8% of the wild type, in notabilis they were reduced to 47%, and in flacca they were reduced to 21%. In wild-type and notabilis tomato plants the induction of Pin2 gene expression could be elicited by heat treatment, current application, or mechanical wounding. In flacca and sitiens only heat stimulation induced Pin2 gene expression. JA levels in flacca and sitiens plants also accumulated strongly upon heat stimulation but not upon mechanical wounding or current application. Characteristic electrical signals evolved in the wild type and in the notabilis and flacca mutants consisting of a fast action potential and a slow variation potential. However, in sitiens only heat evoked electrical signals; mechanical wounding and current application did not change the membrane potential. In addition, exogenous application of ABA to wild-type tomato plants induced transient changes in membrane potentials, indicating the involvement of ABA in the generation of electrical signals. Our data strongly suggest the presence of a minimum threshold value of ABA within the plant that is essential for the early events in electrical signaling and mediation of Pin2 gene expression upon wounding. In contrast, heat-induced Pin2 gene expression and membrane potential changes were not dependent on the ABA level but, rather, on the accumulation of JA.The plant hormones ABA and JA play a predominant role in the conversion of environmental signals into changes in plant gene expression. An increase in endogenous ABA and JA levels precedes and is involved in Pin2 (proteinase inhibitor II) gene expression upon wounding (Peña-Cortés et al., 1989, 1991, 1995, 1996; Farmer and Ryan, 1992; Farmer et al., 1992). This increase in ABA and JA is not restricted to the tissue damaged directly but can also be detected in the nonwounded, systemically induced tissue (Peña-Cortés et al., 1989; Peña-Cortés and Willmitzer, 1995). The accumulation of ABA and JA have been described for several plant species, including potato, tomato, and tobacco (Sanchez-Serrano et al., 1991; Peña-Cortés and Willmitzer, 1995).Further evidence for the involvement of ABA and JA in wound-induced Pin2 gene expression was provided by a series of experiments in which potato plants were sprayed with ABA or JA and Pin2 mRNA accumulated in the absence of any wounding (Peña-Cortés et al., 1989; Hildmann et al., 1992). Both nonsprayed leaves and leaves that were sprayed directly showed increased Pin2 mRNA levels with a pattern identical to the one described for wounded plants (Peña-Cortés et al., 1988; Peña-Cortés and Willmitzer, 1995). Conclusive evidence for the involvement of ABA in wound-induced Pin2 activation was obtained from mutants impaired in ABA biosynthesis. Consequently, wound induction of Pin2 was not observed in the droopy mutant of potato or the sitiens mutant of tomato (Peña-Cortés et al., 1989). However, in these mutants treatment with ABA caused a return of the accumulation of Pin2 mRNA to levels normally found in wild-type plants upon wounding (Peña-Cortés et al., 1991).Like wounding, the application of electrical current was able to initiate ABA and JA accumulation in wild-type plants but not in ABA-deficient plants (Herde et al., 1996). These results suggested that, like wounding, electrical current requires the presence of ABA for the induction of Pin2 gene expression (Herde et al., 1996). In contrast to wounding and electrical current, burning of leaves activated Pin2 gene expression in sitiens mutants by directly triggering the biosynthesis of JA via an alternative pathway that is independent of endogenous ABA levels (Herde et al., 1996).To determine the endogenous levels of ABA that are sufficient to mediate electrical current-, heat-, and wound- induced Pin2 gene expression via electrical signals, we used several tomato mutants containing progressively reduced levels of ABA. The effects of these attenuated ABA levels on JA content and membrane potentials and the expression pattern of Pin2 genes were analyzed. Analysis of JA content was conducted to confirm the existence of an alternative pathway that is independent of endogenous ABA levels in the different ABA-deficient mutants.  相似文献   

14.
赤霉素与脱落酸对番茄种子萌发中细胞周期的调控   总被引:11,自引:0,他引:11  
利用细胞流检仪检测番茄(Lycopersicon esculentum Mill.) GA-缺陷型、ABA-缺陷型和相应的正常品种(野生型)成熟种子胚根尖细胞倍性水平时发现:GA-缺陷型和野生型种子绝大多数细胞DNA 水平为2C,而ABA-缺陷型种子则含有较多的4C细胞。在标准发芽条件下,ABA-缺陷型和野生型种子浸种1 d 后胚根尖细胞DNA 开始复制,随后胚根突破种皮而发芽。然而GA-缺陷型种子除非加入外源GA,否则既不发生细胞DNA 复制,也不发芽。这说明内源GA 是启动番茄种子胚根尖细胞DNA 复制的关键因素,同时也说明番茄根尖细胞DNA 复制是种子发芽的必要条件。实验证明:ABA 不抑制细胞DNA 合成,但阻止G2 细胞进入到M 期。外源ABA处理野生型种子与渗控处理结果相似,可以大幅度提高胚根尖4C/2C细胞的比例,但抑制种子的最终发芽  相似文献   

15.
Osmotic stress severely limits plant growth and agricultural productivity. We have used mutagenesis to identify plant genes that are required for osmotic stress tolerance in tomato. As a result, we have isolated a novel mutant in tomato (tos1) caused by a single recessive nuclear mutation that is hypersensitive to general osmotic stress. Growth measurements demonstrated that the tos1 mutant is less sensitive to intracellular abscisic acid (ABA) and this decreased ABA sensitivity of tos1 is a basic cellular trait expressed by the mutant at all developmental stages analysed. It is not caused by a deficiency in the synthesis of ABA because the tos1 seedlings accumulated more ABA than the wild type (WT) after osmotic stress. In contrast, the tss2 tomato mutant, which is also hypersensitive to osmotic stress, is hypersensitive to exogenous ABA. Comparative analysis of tos1 and tss2 indicates that appropriate ABA perception and signalling is essential for osmotic tolerance.  相似文献   

16.
17.
We recently demonstrated that endogenous abscisic acid (ABA) is involved in methyl jasmonate (MeJA)-induced stomatal closure in Arabidopsis thaliana. In this study, we investigated whether endogenous ABA is involved in MeJA-induced reactive oxygen species (ROS) and nitric oxide (NO) production and cytosolic alkalization in guard cells using an ABA-deficient Arabidopsis mutant, aba2-2, and an inhibitor of ABA biosynthesis, fluridon (FLU). The aba2-2 mutation impaired MeJA-induced ROS and NO production. FLU inhibited MeJA-induced ROS production in wild-type guard cells. Pretreatment with 0.1 μM ABA, which does not induce stomatal closure in the wild type, complemented the insensitivity to MeJA of the aba2-2 mutant. However, MeJA induced cytosolic alkalization in both wild-type and aba2-2 guard cells. These results suggest that endogenous ABA is involved in MeJA-induced ROS and NO production but not in MeJA-induced cytosolic alkalization in Arabidopsis guard cells.  相似文献   

18.
The systemic induction of proteinase inhibitor genes in tomato plants is either mediated by fast electrical signals or alternatively by chemical messengers. In the present study we analyzed the pathway of the electrical signal. The question of which cell types are involved in this pathway of long-distance signaling within plants is still controversial. To identify these we inserted microelectrodes into the veins of tomato leaves (Lycopersicon esculentum Mill. cv. Moneymaker). A newly developed computer program and microcomputer interface enabled us to position these microelectrodes inside the vein with an accuracy of 1 μm. Due to this precision in positioning we were able to demonstrate that the pathway of the electrical signal is not restricted to a specific tissue type, e.g. the phloem. In particular, the entire vein contributes to the propagation of the electrical wave along the plant. Therefore, an apoplastic contribution to the long-distance signal transduction mechanism appears most likely. To furthermore investigate the involvement of cis-abscisic acid (ABA) in this long-distance signal transduction pathway, ABA-deficient tomato mutants (Lycopersicon esculentum cv. Sitiens) were used in comparison to the wild type. Significant differences between the membrane-potential relaxation kinetics of the wild type and the mutants could be detected. Wild-type tomato plants exhibited six characteristic classes of membrane-potential relaxation kinetics following heat treatment. In contrast, the ABA-deficient mutants were more restricted in terms of their relaxation upon heat stimulation. The responses in the membrane potential of all cells within a vein consisted of only three categories. In conclusion, ABA did not affect all cells within the vein in a similar manner. Single cells exhibited different response patterns to systemic heat application in the presence of ABA. Moreover, ABA had a pronounced effect on the resting potentials of individual cells within the veins of tomato. Received: 1 July 1997 / Accepted: 16 January 1998  相似文献   

19.
Lycopersicon esculentum Mill. cv Rheinlands Ruhm (RR) and cv Moneymaker and the three wilty mutants flacca (flc), sitiens (sit), and sitiensw (sitw), together with most reciprocal grafts, were grown in pots and in solution culture. Detached leaflets, and control and steam-girdled intact plants, were left turgid or were wilted in air. Detached leaflets and the leaflets and roots of the intact plants were analyzed for their abscisic acid (ABA) content. Turgid RR leaflets contained about 2.9 ng ABA per milligram dry weight. On average, the flc and sit leaflets contained 33 and 11% of this amount, respectively. The lack of ABA approximately correlated with the severity of the mutant phenotype. Mutant roots also contained less ABA than wild-type roots. Wild-type scions on mutant stocks (wild type/mutant) maintained the normal phenotype of ungrafted plants. Mutant scions grafted onto wild-type stocks reverted to a near wild-type phenotype. After the wild-type leaves were excised from solution culture-grown mutant/wild-type plants, the revertive morphology of the mutant scions was maintained, although endogenous ABA levels in the leaflets fell to typical mutant levels and the leaflets became wilty again. When stressed in air, both leaflets and roots of RR plants produced stress-induced ABA, but the mutant leaflets and roots did not. The roots and leaflets of the grafted plants behaved according to their own genotype, with the notable exception of mutant roots grown with wild-type scions. Roots of flc and sitw recovered the ability to accumulate stress-induced ABA when grafted with RR scions before the stress was imposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号