首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutagenic spectrum resulting from DNA damage by oxygen radicals.   总被引:24,自引:0,他引:24  
Oxygen free radicals are highly reactive species that damage DNA and cause mutations. We determined the mutagenic spectrum of oxygen free radicals produced by the aerobic incubation of single-stranded M13mp2 DNA with Fe2+. The Fe2(+)-treated DNA was transfected into component Escherichia coli, and mutants within the nonessential lac Z alpha gene for beta-galactosidase were identified by decreased alpha-complementation. The frequency of mutants obtained with 10 microM Fe2+ was 20- to 80-fold greater than that obtained with untreated DNA. Mutagenesis was greater after the host cells were exposed to UV irradiation to induce the SOS "error-prone" response. The ability of catalase, mannitol, and superoxide dismutase to diminish mutagenesis indicates the involvement of oxygen free radicals. The sequence data on 94 of the mutants establish that mutagenesis results primarily from an increase in single-base substitutions. Ninety-four percent of the mutants with detectable changes in nucleotide sequence were single-base substitutions, the most frequent being G----C transversions, followed by C----T transitions and G----T transversions. The clustering of mutations at distinct gene positions suggests that Fe2+/oxygen damage to DNA is nonrandom. This mutational spectrum provides evidence that a multiplicity of DNA lesions produced by oxygen free radicals in vitro are promutagenic and could be a source of spontaneous mutations.  相似文献   

2.
The mechanism of DNA damage by hydrazine in the presence of metal ions was investigated by DNA sequencing technique and ESR-spin trapping method. Hydrazine caused DNA damage in the presence of Mn(III), Mn(II), Cu(II), Co(II), and Fe(III). The order of inducing effect on hydrazine-dependent DNA damage (Mn(III) greater than Mn(II) approximately Cu(II) much greater than Co(II) approximately Fe(III)) was related to that of the accelerating effect on the O2 consumption rate of hydrazine autoxidation. DNA damage by hydrazine plus Mn(II) or Mn(III) was inhibited by hydroxyl radical scavengers and superoxide dismutase, but not by catalase. On the other hand, bathocuproine and catalase completely inhibited DNA damage by hydrazine plus Cu(II), whereas hydroxyl radical scavengers and superoxide dismutase did not. Hydrazine plus Mn(II) or Mn(III) caused cleavage at every nucleotide with a little weaker cleavage at adenine residues, whereas hydrazine plus Cu(II) induced piperidine-labile sites frequently at thymine residues, especially of the GTC sequence. ESR-spin trapping experiments showed that hydroxyl radical is generated during the Mn(III)-catalyzed autoxidation of hydrazine, whereas hydrogen atom adducts of spin trapping reagents are generated during Cu(II)-catalyzed autoxidation. The results suggest that hydrazine plus Mn(II) or Mn(III) generate hydroxyl free radical not via H2O2 and that this hydroxyl free radical causes DNA damage. A possibility that the hydrogen atom releasing compound participates in hydrazine plus Cu(II)-induced DNA damage is discussed.  相似文献   

3.
The metal chelating properties of flavonoids suggest that they may play a role in metal-overload diseases and in all oxidative stress conditions involving a transition metal ion. A detailed study has been made of the ability of flavonoids to chelate iron (including Fe 3+ ) and copper ions and its dependence of structure and pH. The acid medium may be important in some pathological conditions. In addition, the ability of flavonoids to reduce iron and copper ions and their activity-structure relationships were also investigated. To fulfil these objectives, flavones (apigenin, luteolin, kaempferol, quercetin, myricetin and rutin), isoflavones (daidzein and genistein), flavanones (taxifolin, naringenin and naringin) and a flavanol (catechin) were investigated. All flavonoids studied show higher reducing capacity for copper ions than for iron ions. The flavonoids with better Fe 3+ reducing activity are those with a 2,3-double bond and possessing both the catechol group in the B-ring and the 3-hydroxyl group. The copper reducing activity seems to depend largely on the number of hydroxyl groups. The chelation studies were carried out by means of ultraviolet spectroscopy and electrospray ionisation mass spectrometry. Only flavones and the flavanol catechin interact with metal ions. At pH 7.4 and pH 5.5 all flavones studied appear to chelate Cu 2+ at the same site, probably between the 5-hydroxyl and the 4-oxo groups. Myricetin and quercetin, however, at pH 7.4, appear to chelate Cu 2+ additionally at the ortho -catechol group, the chelating site for catechin with Cu 2+ at pH 7.4. Chelation studies of Fe 3+ to flavonoids were investigated only at pH 5.5. Only myricetin and quercetin interact strongly with Fe 3+ , complexation probably occurring again between the 5-hydroxyl and the 4-oxo groups. Their behaviour can be explained by their ability to reduce Fe 3+ at pH 5.5, suggesting that flavonoids reduce Fe 3+ to Fe 2+ before association.  相似文献   

4.
The metal chelating properties of flavonoids suggest that they may play a role in metal-overload diseases and in all oxidative stress conditions involving a transition metal ion. A detailed study has been made of the ability of flavonoids to chelate iron (including Fe 3+ ) and copper ions and its dependence of structure and pH. The acid medium may be important in some pathological conditions. In addition, the ability of flavonoids to reduce iron and copper ions and their activity-structure relationships were also investigated. To fulfil these objectives, flavones (apigenin, luteolin, kaempferol, quercetin, myricetin and rutin), isoflavones (daidzein and genistein), flavanones (taxifolin, naringenin and naringin) and a flavanol (catechin) were investigated. All flavonoids studied show higher reducing capacity for copper ions than for iron ions. The flavonoids with better Fe 3+ reducing activity are those with a 2,3-double bond and possessing both the catechol group in the B-ring and the 3-hydroxyl group. The copper reducing activity seems to depend largely on the number of hydroxyl groups. The chelation studies were carried out by means of ultraviolet spectroscopy and electrospray ionisation mass spectrometry. Only flavones and the flavanol catechin interact with metal ions. At pH 7.4 and pH 5.5 all flavones studied appear to chelate Cu 2+ at the same site, probably between the 5-hydroxyl and the 4-oxo groups. Myricetin and quercetin, however, at pH 7.4, appear to chelate Cu 2+ additionally at the ortho -catechol group, the chelating site for catechin with Cu 2+ at pH 7.4. Chelation studies of Fe 3+ to flavonoids were investigated only at pH 5.5. Only myricetin and quercetin interact strongly with Fe 3+ , complexation probably occurring again between the 5-hydroxyl and the 4-oxo groups. Their behaviour can be explained by their ability to reduce Fe 3+ at pH 5.5, suggesting that flavonoids reduce Fe 3+ to Fe 2+ before association.  相似文献   

5.
We report on the elucidation of DNA-protein cross-links formed in isolated mammalian chromatin upon treatment with H2O2 in the presence of iron or copper ions. Analysis of chromatin samples by gas chromatography/mass spectrometry after hydrolysis and derivatization showed the presence of 3-[(1,3-dihydro-2,4-dioxopyrimidin-5-yl)methyl]-L-tyrosine (thymine-tyrosine cross-link) on the basis of the gas chromatographic and mass spectrometric characteristics of the trimethylsilylated authentic compound. Other DNA-protein cross-links involving thymine and the aliphatic amino acids and cytosine and tyrosine, which were known to occur in nucleohistone gamma-irradiated under anoxic conditions, were not observed. This was due to inhibition by oxygen as clearly shown by experiments that were carried out using ionizing radiation under both oxic and anoxic conditions instead of using H2O2 and metal ions. However, oxygen did not inhibit formation of the thymine-tyrosine cross-link in gamma-irradiated chromatin or in chromatin treated with H2O2 and metal ions. The yield of the thymine-tyrosine cross-link was higher upon treatment with H2O2/chelated Fe3+ ions than with H2O2/unchelated Fe3+ ions. By contrast, H2O2/unchelated Cu2+ ions produced a higher yield than H2O2/chelated Cu2+ ions. Almost complete inhibition of cross-link formation was provided by the hydroxyl radical scavengers mannitol and dimethyl sulfoxide when H2O2/chelated metal ions were used. On the other hand, scavengers only partially inhibited formation of cross-links when H2O2/unchelated metal ions were used, possibly indicating the site-specific nature of cross-linking. Superoxide dismutase afforded partial inhibition only when chelated ions were used.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Iron and copper toxicity has been presumed to involve the formation of hydroxyl radical (*OH) from H2O2 in the Fenton reaction. The aim of this study was to verify that Fe2+-O2 and Cu+-O2 chemistry is capable of generating *OH in the quasi physiological environment of Krebs-Henseleit buffer (KH), and to compare the ability of the Fe2+-O2 system and of the Fenton system (Fe2+ + H2O2) to produce *OH. The addition of Fe2+ and Cu+ (0-20 microM) to KH resulted in a concentration-dependent increase in *OH formation, as measured by the salicylate method. While Fe3+ and Cu2+ (0-20 microM) did not result in *OH formation, these ions mediated significant *OH production in the presence of a number of reducing agents. The *OH yield from the reaction mediated by Fe2+ was increased by exogenous Fe3+ and Cu2+ and was prevented by the deoxygenation of the buffer and reduced by superoxide dismutase, catalase, and desferrioxamine. Addition of 1 microM, 5 microM or 10 microM Fe2+ to a range of H2O2 concentrations (the Fenton system) resulted in a H2O2-concentration-dependent rise in *OH formation. For each Fe2+ concentration tested, the *OH yield doubled when the ratio [H2O2]:[Fe2+] was raised from zero to one. In conclusion: (i) Fe2+-O2 and Cu+-O2 chemistry is capable of promoting *OH generation in the environment of oxygenated KH, in the absence of pre-existing superoxide and/or H2O2, and possibly through a mechanism initiated by the metal autoxidation; (ii) The process is enhanced by contaminating Fe3+ and Cu2+; (iii) In the presence of reducing agents also Fe3+ and Cu2+ promote the *OH formation; (iv) Depending on the actual [H2O2]:[Fe2+] ratio, the efficiency of the Fe2+-O2 chemistry to generate *OH is greater than or, at best, equal to that of the Fe2+-driven Fenton reaction.  相似文献   

7.
Phenanthroline and bipyridine, strong chelators of iron, protect DNA from single-strand break formation by H2O2 in human fibroblasts. This fact strongly supports the concept that these DNA single-strand breaks are produced by hydroxyl radicals generated by a Fenton-like reaction between intracellular Fe2+ and H2O2: H2O2 + Fe2+----Fe3+ + OH- + OH: Corroborating this idea is the fact that thiourea, an effective OH radical scavenger, prevents the formation of DNA single-strand breaks by H2O2 in nuclei from human fibroblasts. The copper chelator diethyldithiocarbamate, a strong inhibitor of superoxide dismutase, greatly enhances the in vivo production of DNA single-strand breaks by H2O in fibroblasts. This supports the idea that Fe3+ is reduced to Fe2+ by superoxide ion: O divided by 2 + Fe3+----O2 + Fe2+; and therefore that the sum of this reaction and the Fenton reaction, namely the so-called Haber-Weiss reaction, H2O2 + O divided by 2----O2 + OH- + OH; represents the mode whereby OH radical is produced from H2O2 in the cell. EDTA completely protects DNA from single-strand break formation in nuclei. The chelator therefore removes iron from the chromatin, and although the Fe-EDTA complex formed is capable of reacting with H2O2, the OH radical generated under these conditions is not close enough to hit DNA. Therefore iron complexed to chromatin functions as catalyst for the Haber-Weiss reaction in vivo, similarly to the role played by Fe-chelates in vitro.  相似文献   

8.
Ubiquinol-1 in aerated aqueous solution inactivates several enzymes--alanine aminotransferase, alkaline phosphatase, Na+/K(+)-ATPase, creatine kinase and glutamine synthetase--but not isocitrate dehydrogenase and malate dehydrogenase. Ubiquinone-1 and/or H2O2 do not affect the activity of alkaline phosphatase and glutamine synthetase chosen as model enzymes. Dioxygen and transition metal ions, even if in trace amounts, are essential for the enzyme inactivation, which indeed does not occur under argon atmosphere or in the presence of metal chelators. Supplementation with redox-active metal ions (Fe3+ or Cu2+), moreover, potentiates alkaline phosphatase inactivation. Since catalase and peroxidase protect while superoxide dismutase does not, hydrogen peroxide rather than superoxide anion seems to be involved in the inactivation mechanism through which oxygen active species (hydroxyl radical or any other equivalent species) are produced via a modified Haber-Weiss cycle, triggered by metal-catalyzed oxidation of ubiquinol-1. The lack of efficiency of radical scavengers and the almost complete protection afforded by enzyme substrates and metal cofactors indicate a 'site-specific' radical attack as responsible for the oxidative damage.  相似文献   

9.
Divalent metal ions play a crucial role in forming the catalytic centres of DNA endonucleases. Substitution of Mg2+ ions by Fe2+ ions in two archaeal intron-encoded homing endonucleases, I-DmoI and I-PorI, yielded functional enzymes and enabled the generation of reactive hydroxyl radicals within the metal ion binding sites. Specific hydroxyl radical-induced cleavage was observed within, and immediately after, two conserved LAGLIDADG motifs in both proteins and at sites at, and near, the scissile phosphates of the corresponding DNA substrates. Titration of Fe2+-containing protein-DNA complexes with Ca2+ ions, which are unable to support endonucleolytic activity, was performed to distinguish between the individual metal ions in the complex. Mutations of single amino acids in this region impaired catalytic activity and caused the preferential loss of a subset of hydroxyl radical cleavages in both the protein and the DNA substrate, suggesting an active role in metal ion coordination for these amino acids. The data indicate that the endonucleases cleave their DNA substrates as monomeric enzymes, and contain a minimum of four divalent metal ions located at or near the catalytic centres of each endonuclease. The metal ions involved in cleaving the coding and the non-coding strand are positioned immediately after the N- and C-terminally located LAGLIDADG motifs, respectively. The dual protein/nucleic acid footprinting approach described here is generally applicable to other protein-nucleic acid complexes when the natural metal ion can be replaced by Fe2+.  相似文献   

10.
The topa quinone (TPQ) cofactor of copper amine oxidase is generated by copper-assisted self-processing of the precursor protein. Metal ion specificity for TPQ biogenesis has been reinvestigated with the recombinant phenylethylamine oxidase from Arthrobacter globiformis. Besides Cu2+ ion, some divalent metal ions such as Co2+, Ni2+, and Zn2+ were also bound to the metal site of the apoenzyme so tightly that they were not replaced by excess Cu2+ ions added subsequently. Although these noncupric metal ions could not initiate TPQ formation under the atmospheric conditions, we observed slow spectral changes in the enzyme bound with Co2+ or Ni2+ ion under the dioxygen-saturating conditions. Resonance Raman spectroscopy and titration with phenylhydrazine provided unambiguous evidence for TPQ formation by Co2+ and Ni2+ ions. Steady-state kinetic analysis showed that the enzymes activated by Co2+ and Ni2+ ions were indistinguishable from the corresponding metal-substituted enzymes prepared from the native copper enzyme (Kishishita, S., Okajima, T., Kim, M., Yamaguchi, H., Hirota, S., Suzuki, S., Kuroda, S., Tanizawa, K., and Mure, M. (2003) J. Am. Chem. Soc. 125, 1041-1055). X-ray crystallographic analysis has also revealed structural identity of the active sites of Co- and Ni-activated enzymes with Cu-enzyme. Thus Cu2+ ion is not the sole metal ion assisting TPQ formation. Co2+ and Ni2+ ions are also capable of forming TPQ, though much less efficiently than Cu2+.  相似文献   

11.
Oxidative DNA damage caused by a cysteine metal-catalyzed oxidation system (Cys-MCO) comprised of Fe(3+), O(2), and a cysteine as an electron donor was enhanced by copper, zinc superoxide dismutase (CuZnSOD) in a concentration-dependent manner, as reflected by the formation of 8-hydroxy-2'-deoxyguanosine (8-OH-dG) and strand breaks. Unlike CuZnSOD, manganese SOD (MnSOD) as well as iron SOD (FeSOD) did not enhance DNA damage. The capacity of CuZnSOD to enhance damage to DNA was inhibited by a spin-trapping agent, 5, 5-dimethyl-1-pyrroline N-oxide (DMPO) and a metal chelator, diethylenetriaminepentaacetic acid (DETAPAC). The deoxyribose assay showed that hydroxyl free radicals were generated in the reaction of CuZnSOD with Cys-MCO. We found that the Cys-MCO system caused the release of free copper from CuZnSOD. CuZnSOD also caused the two-fold enhancement of a mutation in the pUC18 lacZ' gene in the presence of Cys-MCO when measured as a loss of alpha-complementation. Based on these results, we interpret the effects of CuZnSOD on Cys-MCO-induced DNA damage and mutation as due to reactive oxygen species, probably hydroxyl free radicals, formed by the reaction of free Cu(2+), released from oxidatively damaged CuZnSOD, and H(2)O(2) produced by the Cys-MCO system.  相似文献   

12.
Aqueous solution of glucose and glycine was heated under reflux for 4 h and extracted with ethyl acetate. Reversed phase HPLC of the extract revealed a new DNA strand-breaking substance, which was purified by repeated HPLC and identified as 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (DDMP). DDMP induced DNA strand breaking in a dose- and time-dependent manner. It was active to break DNA strands at pH 7.4 and 9.4. Its pyranone skeleton was destroyed at the pH values. DNA strand breaking by DDMP was inhibited by superoxide dismutase, catalase, scavengers for hydroxyl radical, spin trapping agents and metal chelators, and the breaking was enhanced by Fe(III) ion. A mixture of DDMP and a spin trap DMPO gave electron spin resonance signals of a spin adduct DMPO-OH, indicating generation of hydroxyl radical. DDMP was found to be mutagenic to Salmonella typhimurium TA100 without metabolic activation. These results show DDMP generated active oxygen species to cause DNA strand breaking and mutagenesis.  相似文献   

13.
The fluorescent intercalation complex of ethidium bromide with DNA was used as a probe to demonstrate damage in the base-pair region of DNA, due to the action of superoxide radicals. The O.2- radical itself, generated by gamma-radiolysis of oxygenated aqueous Na-formate solutions, is rather ineffective with respect to impairment of DNA. Copper(II) ions, known to interact with DNA by coordinate binding at purines, enhance the damaging effect of O.2-. Addition of H2O2 to the DNA/Cu(II) system gives rise to further enhancement, so that DNA impairment by O.2- becomes comparable to that initiated by .OH radicals. These results suggest that the modified, Cu(II)-catalysed, Haber-Weiss process transforms O.2- into .OH radicals directly at the target molecule, DNA-Cu2+ + O.2-----DNA-Cu+ + O2 DNA-Cu+ + H2O2----DNA...OH + Cu2+ + OH- in a "site-specific" mechanism as proposed for other systems (Samuni et al. 1981; Aronovitch et al. 1984). Slow DNA decomposition also occurs without gamma-irradiation by autocatalysis of DNA/Cu(II)/H2O2 systems. In this context we observed that Cu(II) in the DNA-Cu2+ complex (unlike free Cu2+) is capable of oxidizing Fe(II) to Fe(III), thus the redox potential of the Cu2+/Cu+ couple appears to be higher than that of the Fe3+/Fe2+ couple when the ions are complexed with DNA. Metal-catalysed DNA damage by O.2- also occurs with Fe(III), but not with Ag(I) or Cd(II) ions. It was also observed that Cu(II) ions (but neither Ag(I) nor Cd(II] efficiently quench the fluorescence of the intercalation complex of ethidium bromide with DNA.  相似文献   

14.
Metal ion-induced activation of molecular oxygen in pigmented polymers   总被引:1,自引:0,他引:1  
Diamagnetic and paramagnetic metal ions enhanced the rate of production of hydrogen peroxide during autoxidation of melanin pigments, as measured using an oxidase electrode. However, redox-active metal ions, such as Fe3+ and Cu2+, caused a marked decrease in H2O2 production. Evidence for redox-active metal ion-dependent formation of hydroxyl radicals during autoxidation of melanin pigments has been obtained using the electron spin resonance-spin trapping method. Evidence for direct reduction of Fe3+ by melanin polymers also has been obtained using optical spectroscopy. Mechanisms of molecular activation of oxygen induced by metal ions on melanin polymers are discussed.  相似文献   

15.
Reduced lipoic acid, in the presence of cupric ions, introduced single-strand nicks into pSP64 plasmid DNA at micromolar concentrations, converting the supercoiled into open circular and, eventually, linear forms. The metal ion specificity of the reaction was investigated and, of Cu2+, Co2+, Cr3+, Fe3+, Fe2+, Ni2+, Mn2+ and Zn2+, only Cu2+ ions were catalysts for the thiol-induced DNA cleavage at these low concentrations. A wide range of thiols and dithiols was found to be active as DNA cleavers in the presence of Cu2+ ions.  相似文献   

16.
应用脱氧核糖降解法研究了CuZn-SOD对几种·OH产生系统的作用机理.结果证明:SOD对Fe(3+)·O·H2O2系统中·OH的产生有明显的抑制作用,而失活SOD或BSA对它的抑制作用不大;在Fe(2+)·H2O2和CU(2+)·H2O2系统中,SOD、失活SOD和BAS均能抑制·OH的产生;在Fe(2+)·O系统中,SOD对·OH产生作用不大,而失活SOD或BSA对它有明显的抑制作用.由此推测SOD对·OH形成可能有三方面的影响:1.对O的清除作用,阻断Haber-Weiss反应;2.对金属离子的络合作用,降低·OH的产额;3.促进H2O2的积累,加快Fenton反应.  相似文献   

17.
Copper and iron are two widely studied transition metals associated with hydroxyl radical (˙OH) generation, oxidative damage, and disease development. Because antioxidants ameliorate metal-mediated DNA damage, DNA gel electrophoresis assays were used to quantify the ability of ten selenium-containing compounds to inhibit metal-mediated DNA damage by hydroxyl radical. In the Cu(I)/H(2)O(2) system, selenocystine, selenomethionine, and methyl-selenocysteine inhibit DNA damage with IC(50) values ranging from 3.34 to 25.1 μM. Four selenium compounds also prevent DNA damage from Fe(II) and H(2)O(2). Additional gel electrophoresis experiments indicate that Cu(I) or Fe(II) coordination is responsible for the selenium antioxidant activity. Mass spectrometry studies show that a 1?:?1 stoichiometry is the most common for iron and copper complexes of the tested compounds, even if no antioxidant activity is observed, suggesting that metal coordination is necessary but not sufficient for selenium antioxidant activity. A majority of the selenium compounds are electroactive, regardless of antioxidant activity, and the glutathione peroxidase activities of the selenium compounds show no correlation to DNA damage inhibition. Thus, metal binding is a primary mechanism of selenium antioxidant activity, and both the chemical functionality of the selenium compound and the metal ion generating damaging hydroxyl radical significantly affect selenium antioxidant behavior.  相似文献   

18.
The compound [[Pt(trpy)]2Arg-EDTA]+ is synthesized in five steps, purified, and characterized by 1H, 13C, and 195Pt NMR spectroscopy, mass spectrometry, UV-vis spectrophotometry, and elemental analysis. The binuclear [[(Pt(trpy)]2Arg]3+ moiety binds to double-stranded DNA, and the chelating EDTA moiety holds metal cations. In the presence of ferrous ions and the reductant dithiothreitol, the new compound cleaves DNA. It cleaves a single strand in the pBR322 plasmid nearly as efficiently as methidiumrpropyl-EDTA (MPE), and it cleaves a restriction fragment of the XP10 plasmid nonselectively and more efficiently than [Fe(EDTA)]2-. The mechanism of cleavage was studied in control experiments involving different transition-metal ions, superoxide dismutase, catalase, glucose oxidase with glucose, metal-sequestering agents, and deaeration. These experiments indicate that adventitious iron and copper ions, superoxide anion, and hydrogen peroxide are not involved and that dioxygen is required. The cleavage apparently is done by hydroxyl radicals generated in the vicinity of the DNA molecule. The reagent [[Pt(trypy)]2Arg-EDTA]+ differs from methidiumpropyl-EDTA in not containing an intercalator. This difference in binding modes between the binuclear platinum(II) complex and the planar heterocycle may cause useful differences between the two reagents in cleavage of nucleic acids.  相似文献   

19.
Ryu J  Girigoswami K  Ha C  Ku SH  Park CB 《Biochemistry》2008,47(19):5328-5335
Recently discovered evidences suggest that precipitation of Alzheimer's beta-amyloid (Abeta) peptide and the toxicity in Alzheimer's disease (AD) are caused by abnormal interactions with neocortical metal ions, especially Zn2+, Cu2+, and Fe3+. While many studies had focused on the role of a "single" metal ion and its interaction with Abeta peptides, such studies involving "multiple" metal ions have hardly been explored. Here, to explore the nature of codeposition of different metals, two or more metal ions along with Abeta were incubated over a solid template prepared by immobilizing Abeta42 oligomers. The influence of Zn2+,Cu2+, and Fe3+ on Abeta aggregation was investigated by two approaches: co-incubation and sequential addition. Our results using ex situ AFM, ThT-induced fluorescence, and FTIR spectroscopy indicated that the co-incubation of Cu2+, Zn2+, and Fe3+ significantly altered the morphology of aggregates. A concentration dependence study with mixed metal ions suggested that Zn2+ was required at much lower concentrations than Cu2+ to yield nonfibrillar amorphous Abeta deposits. In addition, sequential addition of Zn2+ or Cu2+ on fibrillar aggregates formed by Fe3+ demonstrated that Zn2+ and Cu2+ could possibly change the conformation of the aggregates induced by Fe3+. Our findings elucidate the coexistence of multiple metal ions through their interactions with Abeta peptides or its aggregates.  相似文献   

20.
Active oxygen species are suspected as being a cause of the cellular damage that occurs at the site of inflammation. Phagocytic cells accumulate at these sites and produce superoxide ion, hydrogen peroxide and hydroxyl radical. The ultimate killing species, the cellular target and the mechanism whereby the lethal injury is produced are unknown. We exposed mouse fibroblasts to xanthine oxidase and acetaldehyde, a system which mimics the membrane of phagocytic cells in terms of production of oxygen species. We observed that the generation of these species produced DNA strand breaks and cellular death. The metal chelator o-phenanthroline completely abolished the former effect, and at the same time it effectively protected the cells from lethal injuries. Because complexing iron o-phenanthroline prevents the formation of hydroxyl radical by the Fendon reaction (Fe(II) + H2O2----Fe(III) + OH- + OH.), it is proposed that most of the cell death and DNA damage are brought about by OH radical, produced from other species by iron-mediated reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号