首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The imidazobenzodiazepine Ro 15-4513 antagonizes methoxyflurane anesthesia   总被引:1,自引:0,他引:1  
E J Moody  P Skolnick 《Life sciences》1988,43(16):1269-1276
Parenteral administration of the imidazobenzodiazepine Ro 15-4513 (a high affinity ligand of the benzodiazepine receptor with partial inverse agonist qualities) produced a dose dependent reduction in sleep time of mice exposed to the inhalation anesthetic, methoxyflurane. The reductions in methoxyflurane sleep time ranged from approximately 20% at 4 mg/kg to approximately 38% at 32 mg/kg of Ro 15-4513. Co-administration of the benzodiazepine receptor antagonist Ro 15-1788 (16 mg/kg) or the inverse agonists DMCM (5-20 mg/kg) and FG 7142 (22.5 mg/kg) blocks this effect which suggests that the reductions in methoxyflurane sleep time produced by Ro 15-4513 are mediated via occupation of benzodiazepine receptors. Moreover, neither DMCM (5-20 mg/kg) nor FG 7142 (22.5 mg/kg) reduced methoxyflurane sleep time which suggests this effect of Ro 15-4513 cannot be attributed solely to its partial inverse agonist properties. These observations support recent findings that inhalation anesthetics may produce their depressant effects via perturbation of the benzodiazepine/GABA receptor chloride channel complex, and suggest that Ro 15-4513 may serve as a prototype of agents capable of antagonizing the depressant effects of inhalation anesthetics such as methoxyflurane.  相似文献   

2.
R G Lister 《Life sciences》1987,41(12):1481-1489
The intrinsic effect of the benzodiazepine receptor inverse agonists RO 15-4513 and FG 7142 on the behavior of mice in a holeboard were investigated. Both drugs caused dose-related decreases in exploratory head-dipping. The highest dose of FG 7142 (40 mg/kg) also reduced locomotor activity. RO 15-4513 (1.5 and 3.0 mg/kg) and FG 7142 (10 and 20 mg/kg) reversed the reductions in the number of head-dips caused by ethanol (2 g/kg). The higher doses of these two drugs also partially reversed the locomotor stimulant action of ethanol. Animals that received ethanol in combination with either inverse agonist spent less time head-dipping than vehicle-treated controls. These data indicate that FG 7142 and RO 15-4513 can reverse, at least in part, some of the behavioral effects of ethanol. Neither drug significantly altered blood alcohol concentrations suggesting that the antagonism does not result from pharmacokinetic changes.  相似文献   

3.
We have found that the partial inverse benzodiazepine agonists Ro 15-4513 and FG 7142 antagonize the depressant electrophysiologial effects of locally applied ethanol in the cerebellum. Although absolute tissue concentrations are not known, dose-response curves constructed using pressure-ejection doses as previously described (31, 25) we found that FG 7142 was more efficacious, but less potent than Ro 15-4513. Our observation that ethanol and inverse benzodiazepine agonists have interactions which are not competitive might suggest that these two drugs act through separate, but interactive mechanisms in order to produce the observed ethanol antagonism. If such independent interactions were mediated at different sites on a given macromolecular complex, such as the GABAa/Cl channel, then one might expect to find allosteric interactions between those sites as well as with the functional response of the complex to GABA activation. Indeed, this hypothesis is consistent with the recent finding of Harris and collaborators that ethanol potentiates the inverse agonist actions of Ro 15-4513 and FG 7142. On the other hand, we were unable to find large ethanol-induced potentiations of GABA effects on all neurons which showed depressant responses to ethanol administration in rat cerebellum. However we did find that the GABAa antagonist, bicuculline, blocks the depressant effects of ethanol on the same neurons. We conclude that the interaction between ethanol and GABA probably does not occur directly at the GABAa receptor site, but that the GABAa mechanism does play a permissive role in the ethanol-induced depressions of cerebellar Purkinje neurons. Thus, although a postsynaptic GABAa mechanism may not be the primary locus of action at which ethanol causes depressant electrophysiological responses of neurons, activation of the GABAa receptor may be required to make cerebellar Purkinje neurons responsive to the depressant actions of ethanol. Further investigations will be required to determine the pre vs postsynaptic nature of this interaction of ethanol with the GABA mechanism of action.Special issue dedicated to Dr. Erminio Costa  相似文献   

4.
Gatch MB  Jung ME  Wallis CJ  Lal H 《Life sciences》2002,71(22):2657-2665
Male Long-Evans rats were trained to discriminate mCPP (1.4 mg/kg, i.p.) from saline, using a two-lever, food-reinforced operant task. The GABA(A) antagonist, bicuculline (0.16-0.64 mg/kg), partially substituted for mCPP, whereas the benzodiazepine antagonist, flumazenil (1-10 mg/kg), and the benzodiazepine inverse agonist, Ro 15-4513 (0.25-2.5 mg/kg), failed to substitute for mCPP. Bicuculline produced no change in response rate, whereas Ro 15-4513 dose-dependently decreased responding. Flumazenil produced a small increase in response rates. Flumazenil (10 mg/kg), Ro 15-4513 (1.25 mg/kg), and the benzodiazepine agonists alprazolam (0.64 mg/kg) and diazepam (5 mg/kg) full agonist all failed to block the mCPP discriminative stimulus. When given in combination with mCPP, Ro15-4513 and alprazolam both produced lower response rates than did mCPP alone, whereas flumazenil and diazepam did not significantly alter response rates. These findings provide evidence that GABA(A) antagonists modulate the discriminative stimulus effects of mCPP, but that these effects are not mediated by activity at the benzodiazepine site.  相似文献   

5.
The effect of the anxiogenic beta-carboline methyl-beta-carboline-3-carboxyamide (FG 7142) on dopamine release in prefrontal cortex and striatum in the awake freely moving rat was determined using the technique of microdialysis. FG 7142 (25 mg/kg, i.p.) caused a time-dependent increase in dopamine release in prefrontal cortex which was statistically significantly greater than the response to vehicle administration. Dopamine release in striatum was unaltered by FG 7142. Pretreatment of animals with the benzodiazepine antagonist Ro 15-1788 (30 mg/kg, i.p., 15 min prior to FG 7142 administration) completely abolished the increase in dopamine release caused by FG 7142 in prefrontal cortex. These data indicate that the anxiogenic benzodiazepine inverse agonist FG 7142 can selectively increase dopamine release in prefrontal cortex, and that this effect appears to be mediated via the gamma-aminobutyric acid/benzodiazepine receptor complex.  相似文献   

6.
H C Becker 《Life sciences》1988,43(7):643-650
The purpose of this study was to investigate the effects of the imidazobenzodiazepine RO15-4513, a partial inverse agonist at benzodiazepine (BDZ) receptors, on the stimulant and depressant actions of ethanol in mice. For comparative purposes, another BDZ inverse agonist, FG-7142, was examined as well. Neither RO15-4513 nor FG-7142 influenced the low-dose excitatory effects of ethanol on spontaneous locomotor activity. However, both RO15-4513 and FG-7142 significantly antagonized the depressant effects of ethanol, and this antagonism was completely reversed by pretreatment with the BDZ receptor antagonist, RO15-1788. These data suggest that RO15-4513 is capable of antagonizing only some of the behavioral effects of ethanol, and in particular, those responses to ethanol that are mediated by modulation of the GABA/BDZ-chloride channel receptor complex.  相似文献   

7.
The effects of treatment of brain membranes with diethyl pyrocarbonate (DEP), a histidine-modifying reagent, on the binding of 3H-labeled Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a]- [1,4]benzodiazepine-3-carboxylate) and [3H]diazepam were compared. DEP pretreatment produced a dose-dependent decrease in [3H]diazepam binding, whereas low DEP concentrations enhanced the binding of [3H]Ro 15-4513. These effects were reversed by incubation with hydroxylamine after the treatment. The enhancement of [3H]Ro 15-4513 binding was due to an increase in the affinity of the binding sites (KD), without any effect on binding capacity (Bmax). The enhancement was perceived in cerebral cortical, cerebellar, and hippocampal membranes. DEP treatment decreased the displacement of [3H]Ro 15-4513 binding by diazepam and FG 7142 (N-methyl-beta-carboline-3-carboxamide) but not by Ro 15-4513 and Ro 19-4603 (tert-butyl-5,6-dihydro-5-methyl-6-oxo-4H-imidazol[1,5- a]thieno[2,3-f][1,4]diazepine-3-carboxylate). Although the stimulating effect of gamma-aminobutyric acid (GABA) on [3H]-diazepam binding was not affected by DEP treatment, such treatment reduced the inhibitory effect of GABA on [3H]Ro 15-4513 binding. The enhancement of [3H]Ro 15-4513 binding was observed in membranes pretreated with DEP in the presence of flunitrazepam, whereas such pretreatment reduced significantly the inhibitory effect of DEP on [3H]-diazepam binding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract: We examined the effects of the benzodiazepine inverse agonist FG 7142 on dopamine metabolism in the core and shell subdivisions of the nucleus accumbens. FG 7142 (15 mg/kg i.p.) or vehicle was administered to adult male rats 30 min before they were killed. Selected brain regions, including samples from the whole nucleus accumbens as well as core and shell subdivisions, were collected and assayed for tissue concentrations of dopamine and its major metabolite, 3,4-dihydroxyphenylacetic acid. Consistent with previous reports, FG 7142 administration increased dopamine utilization in the medial prefrontal cortex but not the whole nucleus accumbens. Examination of subdivisions revealed that FG 7142 produced increased dopamine utilization in the shell subdivision of the nucleus accumbens. No effect of FG 7142 on dopamine utilization in the core region of the nucleus accumbens was observed. These data are discussed in terms of in vivo microdialysis studies reporting increased dopamine release in the nucleus accumbens after FG 7142 administration.  相似文献   

9.
To determine whether genetic differences in development of ethanol dependence are related to changes in gamma-aminobutyric acidA (GABAA) receptor function, we measured 36Cl- uptake by brain cortical membrane vesicles from withdrawal seizure prone and withdrawal seizure resistant (WSP/WSR) mice treated chronically with ethanol. Muscimol-stimulated chloride flux was not different between WSP and WSR mice before or after ethanol treatment. Also, augmentation of muscimol action by flunitrazepam or inhibition of muscimol action by the inverse agonists Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a]- [1,4]benzodiazepine-3-carboxylate) and methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) was not different for ethanol-naive WSP and WSR mice. However, chronic ethanol administration enhanced the inhibitory actions of DMCM and Ro 15-4513 on membranes from WSP but not WSR mice. Conversely, chronic ethanol treatment attenuated the action of flunitrazepam on membranes from WSR but not WSP mice, suggesting that the actions of benzodiazepine agonists and inverse agonists are under separate genetic control. These genetic differences in actions of DMCM and Ro 15-4513 indicate that sensitization to benzodiazepine inverse agonists produced by chronic ethanol treatment may be related to development of withdrawal seizures and suggest that differences in the GABA/benzodiazepine receptor complex represent alleles that have segregated during the selection of the WSP/WSR mice.  相似文献   

10.
Rats were exposed to a two-layer drug discrimination procedure using the benzodiazepine (BZ) receptor inverse agonists N′-methyl-β-carboline-3-carboxamide (FG 7142) or methyl-6,7-dimethoxy-4-ethyl-β-carboline-3-carboxylate (DMCM). FG 7142 (30 mg/kg) failed to acquire discriminative stimulus control, although it did suppress responding. The same group of animals was trained successfully to discriminate diazepam (DZP, 2.5 mg/kg) from vehicle. The DZP cue was potentiated by the GABA agonist 4,5,6,7-tetrahydro-isoxazolo [5, 4-c] pyridin-3-ol (THIP, 1–3 mg/kg); THIP alone produced vehicle-appropriate responding. In addition, clonazepam (0.2 mg/kg) and chlordiazepoxide (5 mg/kg) substituted for DZP (with potencies of 7.5 and 0.25 times that of DZP, respectively). In antagonism tests, FG 7142 (5–17.5 mg/kg), methyl-β-carboline-3-carboxylate (β-CCM, 2.5 mg/kg), nicotine (0.3 mg/kg), harmaline (5 mg/kg) and naltrexone (10 mg/kg) did not effect, bicuculine (2 mg/kg) and DMCM (1 mg/kg) partially blocked, and the BZ receptor antagonist Ro 15–1788 (40 mg/kg) completely blocked the discriminative stimulus effects of DZP. In animals trained to discriminate DMCM (0.2 mg/kg) from vehicle, 95% substitution occured with bicuculline (2 mg/kg); DZP (1–5 mg/kg) completely antagonized DMCM. These results indicate that the DZP cue is mediated by GABA-coupled BZ receptors and that GABA may modulate the efficacy of a BZ at its receptor site. However, since inverse BZ receptor agonists (FG 7142, DMCM and β-CCM) were, at best, only marginally effective in antagonizing DZP, the DZP cue may be mediated by a distinct subclass of BZ receptors.  相似文献   

11.
Abstract: Systemic administration of the anxiogenic benzodiazepine inverse agonist FG 7142 has been shown to increase selectively dopamine utilization in the medial prefrontal cortex and the shell, but not core, subregion of the nucleus accumbens. In the present study, we examined the functional interaction between benzodiazepine and N -methyl- d -aspartate receptor influences on dopamine utilization in these areas. Male Sprague-Dawley rats were pretreated with the glycine receptor antagonist (+)-HA 966 (15 mg/kg, i.p.) or saline 15 min before FG 7142 (20 mg/kg, i.p.) or vehicle administration. Subjects were killed 30 min later and assayed for tissue concentrations of dopamine and its major metabolite 3,4-dihydroxyphenylacetic acid in the core and shell subdivisions of the nucleus accumbens and the medial prefrontal cortex. (+)-HA 966 administration blocked FG 7142-induced increased dopamine utilization in both the medial prefrontal cortex and the shell subdivision of the nucleus accumbens. Results are discussed in terms of N -methyl- d -aspartate receptor influences on the response of mesoaccumbal dopamine neurons to stress.  相似文献   

12.
Ethanol-induced limb defects in mice: effect of strain and Ro15-4513   总被引:1,自引:0,他引:1  
It is now thought that ethanol exerts many of its behavioral effects in the CNS by interaction with the gamma-aminobutyric acid (GABA) receptor, and it has been shown that the benzodiazepine reverse agonist Ro15-4513 reverses some of the CNS effects produced by ethanol. The hypothesis was tested that ethanol exerts its teratogenic effects through interaction with a putative embryonic GABA receptor by determining whether Ro15-4513 reverses ethanol-induced forelimb ectrodactyly in C57BL/6 mice. First, pregnant C57BL/6 dams were injected twice i.p. with ethanol (2.9 g/kg body weight, 4 hr apart) on day 10 of gestation: 49% of the fetuses were resorbed or dead and 46% of the survivors showed forelimb ectrodactyly. In contrast, when SWV mice were treated with ethanol, embryolethality was only 11.9% and no forelimb ectrodactyly was observed. In a second experiment, when ethanol (2.6 g/kg x 2) was administered to C57BL/6 mice, 34% resorptions and 31% forelimb ectrodactyly were observed. Ectrodactyly induced by ethanol was primarily of the forelimb and exclusively postaxial. Ethanol produced an unusual forelimb defect in a small number of instances where there was a postaxial autopod reduction defect coupled with a preaxial zeugopod reduction defect. Ro15-4513 administered alone (50 mg/kg x 2) was neither embryolethal nor teratogenic in C57BL/6 mice. To attempt to reverse the teratogenic effect of ethanol, dams that were injected 5 min before each ethanol administration with Ro15-4513 (0.5, 1, 2.5, 5, 10 mg/kg twice) showed no significant change in frequency of forelimb ectrodactyly compared to embryos treated with ethanol alone. However, resorptions increased significantly to 77% and 62% with the 5 and 10 mg/kg doses of Ro15-4513. Thus there appears to be an embryolethal interaction of Ro15-4513 with ethanol. Nevertheless, since Ro15-4513 did not reverse the teratogenic effect induced by ethanol, these results do not support the hypothesis that the teratogenic mechanism of ethanol is mediated through a putative embryonic GABA receptor.  相似文献   

13.
In experiments with audiogenic seizures in DBA/2 mice, we observed that several socalled benzodiazepine receptor antagonists exhibited either anticonvulsive (Ro 15-1788, PrCC) or proconvulsive (FG 7142, beta-CCE, CGS 8216) effects at high receptor occupancy (17-85%), as compared to benzodiazepines and DMCM which had anticonvulsive and proconvulsive actions, respectively, at very low receptor occupancy (less than 10%). Sensitive distinction between benzodiazepine receptor ligands with low anticonvulsive efficacy (partial agonists) and ligands with low proconvulsive, and maybe anxiogenic, efficacy (partial inverse agonists) can thus be obtained in sound seizure susceptible mice.  相似文献   

14.
The imidazobenzodiazepine, Ro15-4513, which is a partial inverse agonist at brain benzodiazepine receptors, reversed the incoordinating effect of ethanol in mice, as measured on an accelerating Rotarod. This effect was blocked by benzodiazepine receptor antagonists. In contrast, Ro15-4513 had no effect on ethanol-induced hypothermia in mice. However, Ro15-4513 reversed the hypothermic effect of pentobarbital, and, at a higher dose, also reversed the incoordinating effect of pentobarbital in mice. The data support the hypothesis that certain of the pharmacological effects of ethanol are mediated by actions at the GABA-benzodiazepine receptor-coupled chloride channel.  相似文献   

15.
The effects of benzodiazepine receptor agonist, diazepam, and inverse agonist, FG 7142, were examined. Strong antagonism between FG 7142 (10 mg/kg) and diazepam (1 mg/kg) activity was revealed in the open field test. On the other hand, both FG 7142 and diazepam inhibited isolation-induced intraspecies aggressive behaviour of rats. FG 7142 also reduced interspecies aggression of mouse-killing rats. The findings suggest that both diazepam and FG 7142 have antiaggressive properties in the isolation-induced aggression model, which are mediated by benzodiazepine receptors of the central nervous system.  相似文献   

16.
Photolabeling of the benzodiazepine receptor, which to date has been done with benzodiazepine agonists such as flunitrazepam, can also be achieved with Ro 15-4513, a partial inverse agonist of the benzodiazepine receptor. [3H]Ro 15-4513 specifically and irreversibly labeled a protein with an apparent molecular weight of 51,000 (P51) in cerebellum and at least two proteins with apparent molecular weights of 51,000 (P51) and 55,000 (P55) in hippocampus. Photolabeling was inhibited by 10 microM diazepam but not by 10 microM Ro 5-4864. The BZ1 receptor-selective ligands CL 218872 and beta-carboline-3-carboxylate ethyl ester preferentially inhibited irreversible binding of [3H]Ro 15-4513 to protein P51. Not only these biochemical results but also the distribution and density of [3H]Ro 15-4513 binding sites in rat brain sections were similar to the findings with [3H]flunitrazepam. Thus, the binding sites for agonists and inverse agonists appear to be located on the same proteins. In contrast, whereas [3H]flunitrazepam is known to label only 25% of the benzodiazepine binding sites in brain membranes, all binding sites are photolabeled by [3H]Ro 15-4513. Thus, all benzodiazepine receptor sites are associated with photolabeled proteins with apparent molecular weights of 51,000 and/or 55,000. In cerebellum, an additional protein (MW 57,000) unrelated to the benzodiazepine receptor was labeled by [3H]Ro 15-4513 but not by [3H]flunitrazepam. In brain sections, this component contributed to higher labeling by [3H]Ro 15-4513 in the granular than the molecular layer.  相似文献   

17.
Neurosteroids are modulators of several receptors and ion channels and are implicated in the pathophysiology of several neuropsychiatric diseases including hepatic encephalopathy (HE). The neurosteroid, allopregnanolone, a positive allosteric modulator of GABAA receptors, accumulates in the brains of HE patients where it can potentiate GABAA receptor-mediated responses. Attenuation of the effects of neurosteroids on GABA-ergic neurotransmission is therefore of interest for the management of HE. In the present study, we determined the effect of the benzodiazepine partial inverse agonist, Ro15-4513, and the benzodiazepine antagonist, flumazenil on modulation of the GABAA mediated chloride currents by allopregnanolone and on spontaneous synaptic activity in cultured hippocampal neurons using the patch-clamp technique. Allopregnanolone (0.03–0.3 μM), dose-dependently potentiated GABA-induced currents, an action significantly reduced by Ro15-4513 (10 μM). In contrast, flumazenil (10 μM) had no effect on the ability of allopregnanolone to potentiate GABAA currents but it blocked the effects of Ro15-4513. The frequency of spontaneous synaptic activity was significantly reduced in the presence of allopregnanolone (0.1 μM) from 1.5 ± 0.7 to 0.1 ± 0.04 Hz. This action was partially reversed by Ro15-4513 (10 μM) but was not significantly influenced by flumazenil (10 μM). These findings suggest that the beneficial affects of Ro15-4513 in experimental HE result from attenuation of the effects of neurosteroids at GABAA receptors. Our results may provide a rational basis for the use of benzodiazepine inverse agonists in the management and treatment of hepatic encephalopathy in patients with liver failure.  相似文献   

18.
Rats (N = 8) were trained to discriminate the stimulus properties of the potent benzodiazepine (BZ) receptor inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) from saline in a two-lever operant task. The initial training dose of DMCM was 0.4 mg/kg at which the discrimination developed slowly; increasing the dose to 0.8 mg/kg resulted in rapid acquisition. However, since convulsions eventually developed during further training (sensitization), the training dose was finally individualized below the convulsive threshold (0.4-0.7 mg/kg). The DMCM cue was mimicked by FG 7142 (10 mg/kg), a non-convulsant anxiogenic beta-carboline, by pentylenetrazol (20-30 mg/kg), and by the GABA antagonist bicuculline (2 mg/kg). The DMCM cue was not, or marginally, blocked by diazepam (2.5 mg/kg) or pentobarbital (10-15 mg/kg). Furthermore, the BZ receptor antagonists CGS 8216 (2.5 mg/kg), ZK 93426 (20 mg/kg), and Ro 15-1788 (20-80 mg/kg) also did not, or only marginally, block the DMCM cue. However, the receptor antagonists (alone) substituted for DMCM although Ro 15-1788 was less effective. The partial BZ receptor agonist ZK 91296 (25 mg/kg), which is structurally similar to DMCM, blocked completely the DMCM stimulus effect. THIP (4 mg/kg) did not block the DMCM cue. To explain these results, we suggest that the repeated DMCM treatment, necessary for maintaining the discrimination, shifts the balancing point ("set-point") for positive (i.e., BZ-like) agonist efficacy versus inverse agonist efficacy, towards inverse action. This hypothesis was supported by the finding of an enhanced ability of GABA to reduce 3H-DMCM binding to cortical neuronal membranes of animals treated chronically with DMCM in a regimen similar to that used to maintain the DMCM discrimination. Furthermore, this treatment did not affect baseline 3H-DMCM binding, baseline or GABA stimulated 3H-diazepam binding, or 35S-TBPS binding (to chloride channels).  相似文献   

19.
Ro 15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a] [1,4]benzodiazepine-3-carboxylate), a partial inverse agonist of brain benzodiazepine receptors, has been shown to antagonize some actions of ethanol. In addition to conventional benzodiazepine binding sites, Ro 15-4513 binds to a specific cerebellar protein, the binding of which has been shown to be insensitive to diazepam. The binding of [3H]Ro 15-4513 was studied in washed membranes of the cerebellum, hippocampus, and cerebral cortex of two rat lines developed for differences in their sensitivity to ethanol-induced motor impairment. Only minor differences were found in the estimated parameters (KD and Bmax) for the total specific binding between the rat lines. The main difference between the rat lines was, however, observed in the characteristics of the cerebellar binding, all of which was displaced by diazepam in most of the alcohol-sensitive [alcohol-nontolerant (ANT)] rats, in contrast to only approximately 75% displacement in most of the alcohol-insensitive [alcohol-tolerant (AT)] ones. The following cerebellar results were obtained with the major subgroups of both lines, i.e., with the AT rats chosen for the presence of the diazepam-insensitive binding and with the ANT rats chosen for its absence. The KD for the total specific [3H]Ro 15-4513 binding in the ANT animals was about half of that in the AT animals. No line difference was found in the Bmax of the binding in these rats. Photolabeling with [3H]Ro 15-4513 showed that the diazepam-insensitive binding was in a protein with a molecular weight of 55,000.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The benzodiazepine antagonist properties of Ro 15-1788 were evaluated in rats trained to discriminate between saline and either 1.0 mg/kg of diazepam or 10 mg/kg of pentobarbital in a two-choice discrete-trial shock avoidance procedure. When administered alone, 1.0 mg/kg of diazepam and 10 mg/kg of pentobarbital produced comparable amounts of drug-appropriate responding (> 84%), whether rats were trained to discriminate between diazepam or pentobarbital and saline. Ro 15-1788 (3–32 mg/kg, p.o.), administered 10 min before diazepam or pentobarbital, produced a dose-related blockade of the discriminative effects of diazepam in both groups of rats, but was completely ineffective in blocking the discriminative effects of pentobarbital. The dose-effect curve for the discriminative effects of diazepam was shifted to the right in a parallel fashion 3- and 13-fold by 10 and 32 mg/kg of Ro 15-1788, respectively, indicating that Ro 15-1788 acts as a surmountable, competitive antagonist of diazepam. When administered alone, Ro 15-1788 (32–100 mg/kg, p.o.) produced primarily saline-appropriate responding, although 100 mg/kg of Ro 15-1788 produced drug-appropriate responding in one out of eight rats. When administered orally 30 min after diazepam, Ro 15-1788 (32 mg/kg) completely reversed within 10 min the discriminative effects of diazepam. The blockade of diazepam's discriminative effects by 32 mg/kg of Ro 15-1788 appeared to last at least as long (approximately 2 hr) as the effects of diazepam alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号