首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The frequency of hybridization in plants is context dependent and can be influenced by the local mating environment. We used progeny arrays and admixture and pollen dispersal analyses to assess the relative importance of pre‐mating reproductive barriers and the local demographic environment as explanations of variation in hybrid frequency in three mapped hybrid zones of Eucalyptus aggregata and E. rubida. A total of 731 open‐pollinated progeny from 36 E. aggregata maternal parents were genotyped using six microsatellite markers. Admixture analysis identified substantial variation in hybrid frequency among progeny arrays (0–76.9%). In one hybrid zone, hybrid frequency was related to pre‐mating barriers (degree of flowering synchrony) and demographic components of the local mating environment (decreasing population size, closer proximity to E. rubida and hybrid trees). At this site, average pollen dispersal distance was less and almost half (46%) of the hybrid progeny were sired by local E. rubida and hybrid trees. In contrast, at the other two sites, pre‐mating and demographic factors were not related to hybrid frequency. Compared to the first hybrid zone where most of the E. rubida (76%) and all hybrids flowered, in the remaining sites fewer E. rubida (22–41%) and hybrid trees (0–50%) flowered and their reproductive success was lower (sired 0–23% of hybrids). As a result, most hybrids were sired by external E. rubida/hybrids located at least 2–3 km away. These results indicate that although pre‐mating barriers and local demography can influence patterns of hybridization, their importance can depend upon the scale of pollen dispersal.  相似文献   

2.
Phenotypic differentiation plays an important role in the formation and maintenance of reproductive barriers. In some cases, variation in a few key aspects of phenotype can promote and maintain divergence; hence, the identification of these traits and their associations with patterns of genomic divergence is crucial for understanding the patterns and processes of population differentiation. We studied hybridization between the alba and personata subspecies of the white wagtail (Motacilla alba), and quantified divergence and introgression of multiple morphological traits and 19,437 SNP loci on a 3,000 km transect. Our goal was to identify traits that may contribute to reproductive barriers and to assess how variation in these traits corresponds to patterns of genome‐wide divergence. Variation in only one trait—head plumage patterning—was consistent with reproductive isolation. Transitions in head plumage were steep and occurred over otherwise morphologically and genetically homogeneous populations, whereas cline centres for other traits and genomic ancestry were displaced over 100 km from the head cline. Field observational data show that social pairs mated assortatively by head plumage, suggesting that these phenotypes are maintained by divergent mating preferences. In contrast, variation in all other traits and genetic markers could be explained by neutral diffusion, although weak ecological selection cannot be ruled out. Our results emphasize that assortative mating may maintain phenotypic differences independent of other processes shaping genome‐wide variation, consistent with other recent findings that raise questions about the relative importance of mate choice, ecological selection and selectively neutral processes for divergent evolution.  相似文献   

3.
In the face of widespread deforestation, the conservation of rainforest trees relies increasingly on their ability to maintain reproductive processes in fragmented landscapes. Here, we analysed nine microsatellite loci for 218 adults and 325 progeny of the tree Dipteryx panamensis in Costa Rica. Pollen dispersal distances, genetic diversity, genetic structure and spatial autocorrelation were determined for populations in four habitats: continuous forest, forest fragments, pastures adjacent to fragments and isolated pastures. We predicted longer but less frequent pollen movements among increasingly isolated trees. This pattern would lead to lower outcrossing rates for pasture trees, as well as lower genetic diversity and increased structure and spatial autocorrelation among their progeny. Results generally followed these expectations, with the shortest pollen dispersal among continuous forest trees (240 m), moderate distances for fragment (343 m) and adjacent pasture (317 m) populations, and distances of up to 2.3 km in isolated pastures (mean: 557 m). Variance around pollen dispersal estimates also increased with fragmentation, suggesting altered pollination conditions. Outcrossing rates were lower for pasture trees and we found greater spatial autocorrelation and genetic structure among their progeny, as well as a trend towards lower heterozygosity. Paternal reproductive dominance, the pollen contributions from individual fathers, did not vary among habitats, but we did document asymmetric pollen flow between pasture and adjacent fragment populations. We conclude that long-distance pollen dispersal helps maintain gene flow for D. panamensis in this fragmented landscape, but pasture and isolated pasture populations are still at risk of long-term genetic erosion.  相似文献   

4.
Ecological differentiation is widely seen as an important factor enabling the stable coexistence of closely related plants of different ploidy levels. We studied ecological and genetic differentiation between co-occurring sexual diploid and apomictic triploid Taraxacum section Ruderalia by analysing spatial patterns both in the distribution of cytotypes and in the distribution of genetic variation within and between the cytotypes. A significant relationship between ploidy level and elevation was found. This mode of ecological differentiation however, was not sufficient to explain the significant spatial structure in the distribution of diploids and triploids within the population. Strong congruence was found between the spatial genetic patterns within the diploids and within the triploids. We argue that this congruence is an indication of gene flow between neighbouring plants of different ploidy levels.  相似文献   

5.
Dispersal is an important life-history trait, but it is notoriously difficult to study. The most powerful approach is to attack the problem with multiple independent sources of data. We integrated information from a 14-year demographic study with molecular data from five polymorphic microsatellite loci to test the prediction of male-biased dispersal in a common elapid species from eastern Australia, the small-eyed snake Rhinoplocephalus nigrescens. These snakes have a polygynous mating system in which males fight for access to females. Our demographic data demonstrate that males move farther than females (about twice as far on average, and about three times for maximum distances). This sex bias in adult dispersal was evident also in the genetic data, which showed a strong and significant genetic signature of male-biased dispersal. Together, the genetic and demographic data suggest that gene flow is largely mediated by males in this species.  相似文献   

6.
The two closely related ash species Fraxinus excelsior L. (common ash) and Fraxinus angustifolia Vahl (narrow-leaved ash) have a broad contact zone in France where they hybridize. However, little is known about the local structure of hybrid zone populations and the isolation mechanisms. We assessed the potential effect of floral phenology on the structure of a riparian ash hybrid zone population in central France. The distribution of flowering times was unimodal and lay between the flowering periods of the two species. Using microsatellite markers, we detected isolation by time, which has possibly originated from assortative mating. Multivariate analyses indicated that morphological variation is not distributed at random with respect to flowering times. Spatial autocorrelation analyses showed that temporal and spatial patterns were tightly linked. Interestingly, despite the fact that the population shows isolation by time, neighbourhood size and historical dispersal variance (sigma = 63 m) are similar to those detected in pure stands of F. excelsior where individuals flower rather synchronously and hermaphrodites are not the most frequent sexual type. Trees flowering at intermediate dates, which comprised the majority of the population, produced on average more flowers and fruits. We detected no significant differences in floral parasite infections relative to reproductive timing, although there was a tendency for late flowering trees to suffer from more gall attack. We discuss the impact of temporal variation in fitness traits and their possible role in the maintenance of the hybrid zone.  相似文献   

7.
Pollinator preference may influence the origin and dynamics of plant hybrid zones. Natural hybrid populations between the red‐flowered Iris fulva and the blue‐flowered Iris brevicaulis are found in southern Louisiana. The genetic structure of these populations reflects a lack of intermediate genotypes. We observed pollinator behaviour in an experimental array with five plants each of I. fulva, I. brevicaulis, their F1, and the first backcross generation in each direction, to obtain data on flower type preferences and transitions between flower types. The most abundant visitors were Ruby‐throated Hummingbirds (Archilochus colubris) and workers of the bumblebee Bombus pennsylvanicus. Hummingbirds visited I. fulva twice as often as I. brevicaulis and visited hybrids at intermediate frequencies. Bumblebee workers preferred the purple‐flowered F1s and visited plants of I. fulva and the backcross to I. fulva more often than I. brevicaulis and its backcross. Overall, F1 flowers were visited most frequently. Both hummingbirds and bumblebees visited nearest neighbours in almost 80% of the interplant movements. This meant that a majority of movements were between different flower types, rather than between plants of the same type. Findings from the present study suggest that pollinator preference is not a major causal factor for the lack of intermediate genotypes in natural iris hybrid populations. Instead, pollinator behaviour in our array promoted mixed mating between flower types belonging to different pollination syndromes. However, owing to predominant nearest‐neighbour visitation, the spatial distribution of parental and hybrid genotypes (in concert with pollinator behaviour) will have a strong influence on mating patterns and thus the genotypic structure and evolution of Louisiana iris hybrid zones.  相似文献   

8.
Abstract.— The plant genera in which natural hybridization is most prevalent tend to be outcrossing perennials with some mechanism for clonal (i.e., asexual) reproduction. Although clonal reproduction in fertile, sexually reproducing hybrid populations could have important evolutionary consequences, little attention has been paid to quantifying this parameter in such populations. In the present study, we examined the frequency and spatial patterning of clonal reproduction in two Louisiana iris hybrid populations. Allozyme analysis of both populations revealed relatively high levels of genotypic diversity. However, a considerable amount of clonality was apparent. Nearly half of all genets (47%) in one population and more than half (61%) in the other had multiple ramets. Furthermore, both populations exhibited relatively high levels of genetic structuring, a pattern that resulted from the aggregation of clonal ramets. The occurrence of clonal reproduction in hybrid populations could not only facilitate introgression through an increase in the number of flowering ramets per genet and/or the survivorship of early generation hybrids, but might also influence the mating system of such populations. Any potential increase in the selfing rate due to cross-pollination among ramets of the same genet may, in turn, increase the likelihood of homoploid hybrid speciation.  相似文献   

9.
The marine bryozoan Celleporella hyalina is a species complex composed of many highly divergent and mostly allopatric genetic lineages that are reproductively isolated but share a remarkably similar morphology. One such lineage commonly encrusts macroalgae throughout the NE Atlantic coast. To explore the processes leading to geographical diversification, reproductive isolation and speciation in this taxon, we (i) investigated NE Atlantic C. hyalina mitochondrial DNA phylogeography, and (ii) used breeding trials between geographical isolates to ascertain reproductive isolation. We find that haplotype diversity is geographically variable and there is a strong population structure, with significant isolation by distance. NE Atlantic C. hyalina is structured into two main parapatric lineages that appear to have had independent Pleistocene histories. Range expansions have resulted in two contact zones in Spain and W Ireland. Lineage 1 is found from Ireland to Spain and has low haplotype diversity, with closely related haplotypes, suggesting a recent population expansion into the Irish Sea, S Ireland, S England and Spain. Lineage 2 is found from Iceland to Spain and has high haplotype diversity. Complete reproductive isolation was found between some geographical isolates representing both lineages, whereas it was incomplete or asymmetric between others, suggesting these latter phylogeographical groups probably represent incipient species. The phylogeographical distribution of NE Atlantic C. hyalina does not fall easily into a pattern of southern refugia, and we discuss likely differences between terrestrial and marine system responses to Pleistocene glacial cycles.  相似文献   

10.
Iris fulva and I. brevicaulis are long-lived plant species known to hybridize where they coexist in nature. Year-to-year survival contributes significantly to overall fitness for both species and their hybrid derivatives, and differences in hybrid survivability may have important consequences to interspecific gene flow in nature. We examined the genetic architecture of long-term survivorship of reciprocal backcross I. fulva x I. brevicaulis hybrids in a common-garden, greenhouse environment. Differences in mortality were found between the two backcross (BC1) hybrid classes, with hybrids crossed toward I. fulva (BCIF) revealing twice the mortality of those hybrids backcrossed toward I. brevicaulis (BCIB). Using genomic scans on two separate genetic linkage maps derived from the reciprocal hybrid populations, we found that hybrid survivorship is influenced by several genetic regions. Multiple interval mapping (MIM) revealed four quantitative trait loci (QTLs) in BCIF hybrids that were significantly associated with survivorship. Introgressed I. brevicaulis DNA increased survivorship at three of the four QTLs. For the fourth QTL, introgressed I. brevicaulis DNA was associated with decreased survivorship. No QTLs were detected in BCIB hybrids; however, single-marker analysis revealed five unlinked loci that were significantly associated with survivorship. At all five markers, survivorship was positively associated with introgressed I. fulva DNA. The present findings have important implications for the evolutionary dynamics of naturally occurring hybrid zones. Regions of the genome that increase survivorship when in a heterozygous (i.e., hybrid) state should have an increased likelihood of passing across species boundaries, whereas those that decrease survivorship will be less likely to introgress.  相似文献   

11.
12.
Statistical methods for estimating genetic parentage are increasingly applied to accommodate limited marker polymorphism and the incomplete sampling of individuals. Neff et al. (2000a, Mol. Ecol. 9, 515–528; 2000b, Mol. Ecol. 9, 529–539) published a method (Pat) that estimates the proportion of next-generation individuals sired by a focal male, taking into account that the male may be genetically compatible, by random chance, with offspring that are not his own. Here we employ this method to reestimate paternity of 68 nest-guarding males from several fish species. The difference between the conventional exclusion-based estimate and Pat was >0.05 in only four of the 68 (5.9%) fish nests analyzed. An analytical formula shows that the difference between the two estimates is expected to be negligible if the focal male is consistent with a large proportion of the genotyped offspring, or if marker polymorphism is high. In addition, computer simulations illustrate how numbers of marker loci and their levels of genetic polymorphism, as well as the mating system of the organism under study, can influence estimates of paternity derived from exclusion-based estimates and Pat. Finally, we discuss various applications of these estimators including cases where additional biological information is present in the form of behavioral observations on parental care.  相似文献   

13.
Homoploid hybrid speciation has generally been viewed as a rare evolutionary phenomenon, with relatively few well-documented cases in nature. Here, we investigate the origin of Stephanomeria diegensis , a diploid flowering plant species that has been proposed to have arisen as a result of hybridization between S. exigua and S. virgata . Across the range of S. diegensis , all individuals share a common chloroplast haplotype with S. virgata while showing a greater affinity for S. exigua in terms of nuclear genetic diversity. A prinicipal coordinates analysis (PCO) based on the nuclear data revealed that S. diegensis is most similar to each parent along different axes. Moreover, a Bayesian clustering analysis as well as a hybrid index-based analysis showed evidence of mixed ancestry, with approximately two thirds of the S. diegensis nuclear genome derived from S. exigua . These results provide strong support for a homoploid hybrid origin of S. diegensis . Finally, contrary to the finding that homoploid hybrid species are typically multiply-derived, our results were most consistent with a single origin of this species.  相似文献   

14.
15.
Plant mating systems are known to influence population genetic structure because pollen and seed dispersal are often spatially restricted. However, the reciprocal outcomes of population structure on the dynamics of polymorphic mating systems have received little attention. In gynodioecious sea beet (Beta vulgaris ssp. maritima), three sexual types co‐occur: females carrying a cytoplasmic male sterility (CMS) gene, hermaphrodites carrying a non‐CMS cytoplasm and restored hermaphrodites that carry CMS genes and nuclear restorer alleles. This study investigated the effects of fine‐scale genetic structure on male reproductive success of the two hermaphroditic forms. Our study population was strongly structured and characterized by contrasting local sex‐ratios. Pollen flow was constrained over short distances and depended on local plant density. Interestingly, restored hermaphrodites sired significantly more seedlings than non‐CMS hermaphrodites, despite the previous observation that the former produce pollen of lower quality than the latter. This result was explained by the higher frequency of females in the local vicinity of restored (CMS) hermaphrodites as compared to non‐CMS hermaphrodites. Population structure thus strongly influences individual fitness and may locally counteract the expected effects of selection, suggesting that understanding fine scale population processes is central to predicting the evolution of gender polymorphism in angiosperms.  相似文献   

16.
To establish a baseline for conservation of a threatened clonal tree, Magnolia tomentosa, we investigated size distribution and genetic structure within a population, using six microsatellite markers. Within the study site, 1044 living ramets (stems) were distinguished into 175 genets (individuals). The mean number of ramets per genet was 5.97, and 76% of all genets had multiple ramets. Genets, which apparently produced new ramets through sprouting and layering, were generally composed of several large ramets and many small ramets. Spatial autocorrelation analysis of microsatellite alleles revealed positive autocorrelation over short distances for both ramets and genets. The Moran's I-value of ramets in the shortest distance class was 3.8 times larger than that of genets, reflecting the effect of clonal growth. To analyse the size-class differences in genetic structure, the 175 genets were separated into two size classes, small and large. The correlogram for the small genets exhibited positive spatial autocorrelation in the shortest distance class, but this was not the case for the correlogram for the large genets, indicating that genetic structure is weakened or lost through self-thinning as the genets grow. The FIS value over all loci for the small genets was positive and deviated significantly from zero, while the corresponding value for the large genets was close to zero. The excess homozygotes in the small genets may be the result of genetic substructuring and/or inbreeding, and the reduction in homozygote frequency from the small to large genets may be because of loss of genetic structure and/or inbreeding depression.  相似文献   

17.
18.
Sex‐biased dispersal is pervasive and has diverse evolutionary implications, but the fundamental drivers of dispersal sex biases remain unresolved. This is due in part to limited diversity within taxonomic groups in the direction of dispersal sex biases, which leaves hypothesis testing critically dependent upon identifying rare reversals of taxonomic norms. Here, we use a combination of observational and genetic data to demonstrate a rare reversal of the avian sex bias in dispersal in the cooperatively breeding white‐browed sparrow weaver (Plocepasser mahali). Direct observations revealed that (i) natal philopatry was rare, with both sexes typically dispersing locally to breed, and (ii), unusually for birds, males bred at significantly greater distances from their natal group than females. Population genetic analyses confirmed these patterns, as (i) corrected Assignment index (AIc), FST tests and isolation‐by‐distance metrics were all indicative of longer dispersal distances among males than females, and (ii) spatial autocorrelation analysis indicated stronger within‐group genetic structure among females than males. Examining the spatial scale of extra‐group mating highlighted that the resulting ‘sperm dispersal’ could have acted in concert with individual dispersal to generate these genetic patterns, but gamete dispersal alone cannot account entirely for the sex differences in genetic structure observed. That leading hypotheses for the evolution of dispersal sex biases cannot readily account for these sex‐reversed patterns of dispersal in white‐browed sparrow weavers highlights the continued need for attention to alternative explanations for this enigmatic phenomenon. We highlight the potential importance of sex differences in the distances over which dispersal opportunities can be detected.  相似文献   

19.
20.
Strong ecological selection on a genetic locus can maintain allele frequency differences between populations in different environments, even in the face of hybridization. When alleles at divergent loci come into tight linkage disequilibrium, selection acts on them as a unit and can significantly reduce gene flow. For populations interbreeding across a hybrid zone, linkage disequilibria between loci can force clines to share the same slopes and centers. However, strong ecological selection on a locus can also pull its cline away from the others, reducing linkage disequilibrium and weakening the barrier to gene flow. We looked for this “cline uncoupling” effect in a hybrid zone between stream resident and anadromous sticklebacks at two genes known to be under divergent natural selection (Eda and ATP1a1) and five morphological traits that repeatedly evolve in freshwater stickleback. These clines were all steep and located together at the top of the estuary, such that we found no evidence for cline uncoupling. However, we did not observe the stepped shape normally associated with steep concordant clines. It thus remains possible that these clines cluster together because their individual selection regimes are identical, but this would be very surprising given their diverse roles in osmoregulation, body armor, and swimming performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号