首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Females of many animal species store sperm after copulation for use in fertilization, but the mechanisms controlling sperm storage and utilization are largely unknown. Here we describe a novel male sterile mutation of Drosophila melanogaster, wasted (wst), which shows defects in various processes of sperm utilization. The sperm of wst mutant males are stored like those of wild-type males in the female sperm storage organs, the spermathecae and seminal receptacles, after copulation and are released at each ovulation. However, an average of thirteen times more wst sperm than wild type sperm are released at each ovulation, resulting in rapid loss of sperm stored in seminal receptacles within a few days after copulation. wst sperm can enter eggs efficiently at 5 hr after copulation, but the efficiency of sperm entry decreases significantly by 24 hr after copulation, suggesting that wst sperm lose their ability to enter eggs during storage. Furthermore, wst sperm fail to undergo nuclear decondensation, which prevents the process of fertilization even when sperm enter eggs. Our results indicate that the wst gene is essential for independent processes in the utilization of stored sperm; namely, regulation of sperm release from female storage organs, maintenance of sperm efficiency for entry into eggs, and formation of the male pronucleus in the egg at fertilization.  相似文献   

2.
Conditions were established for routine cinemicrographic examination of sperm incorporation by living zona-free mouse eggs employing oil immersion objectives and Nomarski optics. Initial sperm attachment to the egg plasma membrane, which was reversible and appeared to require flagellar activity, involved localized areas of the head corresponding approximately to the position of the equatorial segment. Penetrating sperm lay flat on the egg and, during incorporation, appeared to sink into the egg cytoplasm, accompanied by short bursts of flagellar activity and subsequent rotation of the flagellum around its insertion point. Ensuing sperm head decondensation involved dissociation of individual particulate structures and a dramatic localized clearing in the egg cytoplasm. The normalcy of the penetration process and the potential applicability of this approach was attested to by the observations that polar body extrusion, male and female pronuclear formation, and migration through the egg cytoplasm in preparation for syngamy occurred in several sequences followed for extended time periods.  相似文献   

3.
The fertilization rates with ICSI range from 30% to 70% and suggest that, despite injecting sperm into mature oocytes, significant fertilization failure still occurs in humans. The objective of this study was to determine technical and physiological factors which may contribute to lower fertilization following ICSI. Eggs that failed to show two pronuclei (PN) 48 hours after ICSI were studied at two different time intervals: at ICSI program inception (group A) and after 8 months (group B). The eggs were analyzed by staining with DNA fluorochromes, Hoescht 33258 and DAPI. The extent of sperm head as well as maternal chromatin decondensation in unfertilized ICSI eggs was determined by high resolution fluorescence microscopy. The average fertilization rate (FR) from all ICSI cycles in these two groups was 45%. The FR in Groups A and B were 35% and 59%, respectively (P < 0.05). In Group A, 65% of the unfertilized eggs were characterized by condensed sperm chromatin with 11% showing partial decondensation. In Group B, only 28% of the unfertilized eggs demonstrated condensed sperm chromatin while 45% were partially decondensed. Sperm chromatin was not detected in 24% of all unfertilized eggs studied. The maternal chromatin remained at metaphase II in 84% of all unfertilized eggs analyzed. These observations suggest that the technical problem of deposition of the sperm inside the egg is not the major cause for failure of fertilization rates in ICSI cycles. The increased percentage of eggs undergoing sperm head decondensation may be related to subtle changes in technique as experience is gained over time. The failure of sperm head decondensation in some of the ICSI eggs may be associated with cytoplasmic immaturity but not nuclear maturity.  相似文献   

4.
Microtubule organization and chromatin configurations in rabbit eggs after in vivo rabbit fertilization and after intracytoplasmic injection with human sperm were characterized. In unfertilized eggs, an anastral barrel-shaped meiotic spindle, oriented radially to the cortex, was observed. After rabbit sperm incorporation, microtubules were organized into a radial aster from the sperm head, and cytoplasmic microtubules were organized around the male and female pronuclei. The microtubules extending from the decondensed sperm head participated in pronuclear migration, and organization around the female pronucleus may also be important for pronuclear centration. Support for these observations was found in parthenogenetically activated eggs, in which microtubule arrays were organized around the single female pronucleus that formed after artificial activation. These observations support a biparental centrosomal contribution during rabbit fertilization as opposed to a strictly paternal inheritance pattern suggested from previous studies. In rabbit eggs that received injected human donor sperm, an astral array of microtubules radiated from the sperm neck and enlarged as the sperm head underwent pronuclear decondensation. gamma-Tubulin was observed in the center of the sperm aster. We conclude that the rabbit egg exhibits a blended centrosomal contribution necessary for completion of fertilization and that the rabbit egg may be a novel animal model for assessing centrosomal function in human sperm and spermatogenic cells following intracytoplasmic injection.  相似文献   

5.
To assess the role of the availability of sperm nuclear templates in the regulation of DNA synthesis, we correlated the morphological status of the fertilizing hamster sperm nucleus with its ability to synthesize DNA after in vivo and in vitro fertilization. Fertilized hamster eggs were incubated in 3H-thymidine for varying periods before autoradiography. None of the decondensed sperm nuclei nor early (Stage I) male pronuclei present after in vivo or in vitro fertilization showed incorporation of label, even in polyspermic eggs in which more advanced pronuclei were labeled. In contrast, medium-to-large pronuclei (mature Stage II pronuclei) consistently incorporated 3H-thymidine. To investigate the contribution of egg cytoplasmic factors to the regulation of DNA synthesis, we examined the timing of DNA synthesis by microinjected sperm nuclei in eggs in which sperm nuclear decondensation and male pronucleus formation were accelerated experimentally by manipulation of sperm nuclear disulfide bond content. Although sperm nuclei with few or no disulfide bonds decondense and form male pronuclei faster than nuclei rich in disulfide bonds, the onset of DNA synthesis was not advanced. We conclude the the fertilizing sperm nucleus does not become available to serve as a template for DNA synthesis until it has developed into a mature Stage II pronucleus, and that, as with decondensation and pronucleus formation, DNA synthesis also depends upon egg cytoplasmic factors.  相似文献   

6.
Decondensation of compact and inactive sperm chromatin by egg cytoplasm at fertilization is necessary to convert the male germ cell chromatin to an active somatic form. We studied decondensation of sea urchin sperm nuclei in a cell-free extract of sea urchin eggs to define conditions promoting decondensation. We find that egg cytosol specifically phosphorylates two sperm-specific (Sp) histones in vitro in the same regions as in vivo. This activity is blocked by olomoucine, an inhibitor of cdc2-like kinases, but not by chelerythrine, an inhibitor of protein kinase C (PKC). PKC phosphorylates and solubilizes the sperm nuclear lamina, one requirement for decondensation. Olomoucine, which does not inhibit lamina removal, blocks sperm nuclear decondensation in the same concentration range over which it is effective in blocking Sp histone phosphorylation. In a system free of other soluble proteins, neither PKC nor cdc2 alone elicit sperm chromatin decondensation, but the two act synergistically to decondense sperm nuclei. We conclude that two kinases activities are sufficient for sea urchin male pronuclear decondensation in vitro, a lamin kinase (PKC) and a cdc2-like Sp histone kinase.  相似文献   

7.
The plasma membrane of the spermatozoa of Drosophila melanogaster contains two integral proteins with glycosidase activity, beta-N-acetylglucosaminidase and alpha-D-mannosidase. Biochemical analysis and ultrastructural cytochemistry of spermatozoa of the autosomal male sterile mutant casanova reveal that at least one of these enzymes, beta-N-acetylglucosaminidase, is crucial for sperm-egg interactions. casanova sperm are motile, morphologically normal, are transferred to the female at mating, but are unable to fertilize the eggs. The mutation was localised by deficiency mapping to the chromosomal region 95E8-F7. Fluorimetric assays showed that the mutant's sperm have the same level of alpha-D-mannosidase activity as wild-type sperm, whereas beta-N-acetylglucosaminidase activity reaches only 51% of the wild-type level. The biochemical characteristics of alpha-D-mannosidase and of the residual beta-N-acetylglucosaminidase are the same as in wild-type males. Ultrastructural localization of the enzymes indicated that casanova spermatozoa lacks beta-N-acetylglucosaminidase on the plasma membrane covering the acrosome, whereas the location of this glycosidase at the terminal part of the sperm tail is indistinguishable from the wild-type situation. The results strongly suggest that in Drosophila the beta-N-acetylglucosaminidase of the plasma membrane covering the acrosome functions as a receptor for the glycoconjugates on the egg surface. We named the putative egg receptor EROS. This is the first evidence for an egg/sperm recognition system in insects. The mechanism is similar to those known from higher animals.  相似文献   

8.
During fertilization in mice, acrosome-intact sperm bind via plasma membrane overlying their head to a glycoprotein, called ZP3, present in the egg extracellular coat or zona pellucida. Bound sperm then undergo the acrosome reaction, which results in exposure of inner acrosomal membrane, penetrate through the zona pellucida, and fuse with egg plasma membrane. Thus, in the normal course of events, acrosome-reacted sperm must remain bound to eggs, despite loss of plasma membrane from the anterior region of the head and exposure of inner acrosomal membrane. Here, we examined maintenance of binding of sperm to the zona pellucida following the acrosome reaction. We found that polyclonal antisera and monoclonal antibodies directed against ZP2, another zona pellucida glycoprotein, did not affect initial binding of sperm to eggs, but inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. On the other hand, polyclonal antisera and monoclonal antibodies directed against ZP3 did not affect either initial binding of acrosome-intact sperm to eggs or maintenance of binding following the acrosome reaction. We also found that soybean trypsin inhibitor, a protein reported to prevent binding of mouse sperm to eggs, did not affect initial binding of sperm to eggs, but, like antibodies directed against ZP2, inhibited maintenance of binding of sperm that had undergone the acrosome reaction on the zona pellucida. These and other observations suggest that ZP2 serves as a secondary receptor for sperm during the fertilization process in mice and that maintenance of binding of acrosome-reacted sperm to eggs may involve a sperm, trypsin-like proteinase.  相似文献   

9.
Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin   总被引:25,自引:0,他引:25  
A Philpott  G H Leno  R A Laskey 《Cell》1991,65(4):569-578
At fertilization, sperm chromatin decondenses in two stages, which can be mimicked in extracts of Xenopus eggs. Rapid, limited decondensation is followed by slower, membrane-dependent decondensation and swelling. Nucleoplasmin, an acidic nuclear protein, occurs at high concentration in Xenopus eggs and has a histone-binding role in nucleosome assembly. Immunodepleting nucleoplasmin from egg extracts inhibits the initial rapid stage of sperm decondensation, and also the decondensation of myeloma nuclei, relative to controls of mock depletion and TFIIIA depletion. Readdition of purified nucleoplasmin recues depleted extracts. A physiological concentration of purified nucleoplasmin alone decondenses both sperm and myeloma nuclei. We conclude that nucleoplasmin is both necessary and sufficient for the first stage of sperm decondensation in Xenopus eggs.  相似文献   

10.
日本鳗鲡精卵的超微结构以及受精过程观察   总被引:1,自引:0,他引:1  
通过扫描电镜和透射电镜对经人工催产获得的日本鳗鲡(Anguilla japonica)精子、卵膜的超微结构以及受精过程进行了观察。实验观察到,除一般硬骨鱼类的精子特性外,日本鳗鲡精子有其独特的结构。精子头部为不规则的梨形,有背腹面之分。一个巨大的球形线粒体位于头部顶端。精子中段向后伸出一支根,支根位于袖套腔外精子的背侧,前端向精子头部线粒体方向延伸,支根的微管结构为"8+2"结构,并在精子入卵过程中起到切断鞭毛的作用。精子的尾部由鞭毛和鞭毛末端的结组成。鞭毛横切面呈圆形,无侧鳍,鞭毛微管结构为"9+0"结构。受精卵的整个表面密布着无规律延伸的脊、脊包围形成的窝和窝中的孔所组成的脊孔复合体,但无典型特征的受精孔。受精卵超薄切片观察发现,日本鳗鲡卵膜分为外层壳膜和内层卵黄膜。壳膜与卵黄膜间为卵周隙。壳膜只观察到放射带,未见透明带。放射带可分为三个亚层:最外层为脊孔复合体的脊,中间层为皱纹层,最内层为致密的平滑层。脊孔复合体的孔横穿整个放射带,在放射带内层形成一个乳突状结构。日本鳗鲡的卵膜不仅具有保护卵子的作用,而且还参与了受精。实验还通过扫描电镜观察了日本鳗鲡精子的入卵过程。观察结果认为:日本鳗鲡精子入卵过程可分为卵膜对精子的吸引、精子对卵膜的锚定、精核的进入和孔封闭等4个阶段。但由于研究只观察到受精过程中日本鳗鲡精子和卵膜的形态变化,因此对精子穿过卵膜的方式和特征等尚需做进一步的研究。整个受精过程为1min30s左右。此外,研究还探讨了日本鳗鲡精子结构的特殊性和受精过程的特殊性,为进一步突破日本鳗鲡人工育苗技术提供了理论依据。    相似文献   

11.
These studies were designed to test the hypothesis that sperm nuclear decondensation and male pronuclear formation during hamster fertilization depend upon the ability of the fertilized oocyte to reduce sperm nuclear disulfide bonds. In a first series of experiments, treatment of mature oocytes with the sulfhydryl blocking agent iodoacetamide or the glutathione oxidant diamide caused a dose-dependent inhibition of decondensation in microinjected sperm nuclei. Inhibition of decondensation was not observed, however, when sperm nuclei were treated in vitro with dithiothreitol (DTT) to reduce disulfide bonds prior to their microinjection. In a second series of experiments, germinal vesicle (GV)-intact oocytes and pronuclear eggs, in which mature, disulfide-rich sperm nuclei do not decondense, were found to support the decondensation of disulfide-poor DTT-treated sperm nuclei or testicular spermatid nuclei. The decondensed sperm nuclei were not, however, transformed into male pronuclei. The results of these studies suggest: (1) that sperm nuclear decondensation in the hamster requires disulfide bond reduction, (2) that GV-intact oocytes and pronuclear eggs lack sufficient reducing power to effect sperm nuclear decondensation, and (3) that disulfide bond reduction is required but not sufficient for pronuclear formation.  相似文献   

12.
This study described the fertilization process of the jellyfish Cladonema uchidai by means of transmission electron microscopy. Female pronucleus was situated in close vicinity to the animal pole of the spawned egg, where the surface of the egg was flat or slightly depressed. Microvilli were observed except on the surface at the animal pole. The egg was entirely covered with a coat composed of fibrous materials. The spermatozoon was of the primitive type, and the proacrosomal vesicles were found immediately beneath the plasma membrane of the antero-lateral region of the sperm head. Within 15 sec after insemination, spermatozoa were incorporated in the egg cytoplasm only at the microvilli-free surface at the animal pole. Neither opening of the proacosomal vesicles nor formation of the acrosomal process was observed. No appreciable changes of cortical cytoplasm could be detected, although the egg became sticky after fertilization. Decondensation of the incorporated sperm nucleus occurred without breakdown of the original nuclear envelope. Within 10 min after insemination, the sperm nucleus still under the process of its decondensation fused with the female pronucleus. These findings were discussed in comparison with the fertilization process of higher metazoans as well as of other cnidarians.  相似文献   

13.
Nuclear envelope dynamics during male pronuclear development   总被引:1,自引:0,他引:1  
Upon fertilization, the sperm nucleus undergoes reactivation. The poreless sperm nuclear envelope is replaced by a functional male pronuclear envelope and the highly compact male chromatin decondenses. Here some recent evidence is examined: that disassembly of the sperm lamina is required for chromatin decondensation, that remnant portions of the sperm nuclear envelope target the binding of egg membrane vesicles that form the male pronuclear envelope, that functional male pronuclear envelopes containing lamin B receptor assemble prior to lamin import and lamina formation, and that lamina assembly drives male pronuclear swelling. Several unresolved issues are discussed.  相似文献   

14.
The aim of the present study was to determine the morphological changes that take place in the male and female gametes during in vivo fertilization in the Australian marsupial, the fat-tailed dunnart, Sminthopsis crassicaudata. Plastic sections were cut of sperm and eggs recovered from the oviducts of recently mated individuals, and light microscopy of thick, and transmission EM of thin, sections was carried out. It was found that, before penetration of the zona, the spermatozoon came to lie along the outer surface with its rostral tip forming a depression in the zona substance. During penetration, zona material was packed tightly around the spermatozoon, and no large hole was formed. A spermatozoon within the perivitelline space had made contact with the oolemma by way of its apical tip. In a spermatozoon partly incorporated into the ooplasm, fusion appeared to have taken place between its plasma membrane and that of the oolemma. Mucoid coat material became deposited outside the zona at this time; its existence and/or the release of cortical granule content probably prevented polyspermy. Once inside the egg cytoplasm, the sperm head sometimes travelled a considerable distance before chromatin decondensation occurred. In addition, it appeared to rotate somewhat on its axis at this time. Finally, some membranous structures were found around two condensed sperm heads in the ooplasm, which may have been part of the pronuclear envelope. Thus this study on in vivo fertilization in the dunnart documents, for the first time, some aspects of fertilization in an Australian marsupial as seen with the transmission electron microscope; it indicates a few differences from those previously found for the American opossum.  相似文献   

15.
Sequential transformations of human sperm nucleus in human egg   总被引:1,自引:0,他引:1  
In-vitro insemination of human zona-free oocytes prepared from oocytes that failed to fertilize in an in-vitro fertilization programme was used as an experimental model to study the time course and morphological events during the development of sperm nuclei into male pronuclei. At 30 min after insemination, 22 eggs were cultured in a CO2 incubator for further 3.5 h and 17 eggs were placed individually between a slide and coverslip for randomly repeated microscopical observations in a controlled environment for at least 3.5 h. Simultaneous arrest of maternal meiosis and sperm nuclear development occurred in 36.4% (8/22) eggs cultured in the CO2 incubator and 47.1% (8/17) of those cultured between a slide and coverslip. Sequential transformation of the human sperm nucleus in human eggs was studied in 6 eggs that showed continuous development of sperm nuclei into male pronuclei during at least 3.5 h after insemination. The early sperm nuclear development in human egg ooplasm can be divided into three phases: the sperm nucleus first decondenses (phase 1) then partly recondenses (phase 2) before expanding again to form an early male pronucleus (phase 3). The prepronuclear stages (phases 1 and 2) took about 60 min each and the pronuclear formation (phase 3) began between 120 and 170 min after insemination. Early pronuclear formation was associated with the occurrence of dense outline material, probably a precursor of the future pronuclear membrane, around the recondensed nucleus in re-expansion (phase 3). Between 30 and 60 min after the beginning of phase 3, numerous (greater than 20) dense grains, considered as nucleolar precursors, were clearly visible inside the growing male pronucleus. Moreover, we have examined sperm nuclear changes in some eggs in which the progression of late meiosis was abnormal. Meiotic arrest of maternal chromatin was always associated with arrest of sperm head development. In 75% (6/8) of the eggs arrested in the metaphase II stages and in 87.5% (7/8) of the eggs arrested in late anaphase II, sperm nuclear development was stopped at the decondensed and recondensed stages, respectively. We have always observed male pronuclei when a maternal pronucleus was present in the egg. These observations suggested that maternal chromatin and sperm nuclear development are probably regulated by common factor(s).  相似文献   

16.
Sperm incorporation and the formation of the fertilization cone with its associated microvilli were investigated by scanning electron microscopy of eggs denuded of their vitelline layers with dithiothreitol or stripped of their elevating fertilization coats by physical methods. The activity of the elongating microvilli which appear to engulf the entering spermatozoon was recorded in living untreated eggs with time-lapse video microscopy. Following the acrosome reaction, the elongated acrosomal process connects the sperm head to the egg surface. About 15 microvilli adjacent to the attached sperm elongate at a rate of 2.6 μm/min and appear to engulf the sperm head, midpiece, and sperm tail. These elongate microvilli swell to form the fertilization cone (average height, 6.7 ± 2.0 μm) and are resorbed as the sperm tail enters the egg cytoplasm 10 min after insemination. Cytochalasin B, an inhibitor of microfilament motility, completely inhibits the observed egg plasma membrane surface activity in both control and denuded eggs. These results argue for a role of the microfilaments found in the egg cortex and microvilli as necessary for the engulfment of the sperm during incorporation and indicate that cytochalasin interferes with the fertilization process at this site.  相似文献   

17.
In human fertilization, the sperm introduces the centrosome; the microtubule-organizing center and microtubules are organized within the inseminated egg from the sperm centrosome. These microtubules form a radial array, called the sperm aster, the functioning of which is essential to pronuclear movement for union of male and female genome. The sperm centrosomal function is considered to be necessary for the normal human fertilization process. Therefore, the dysfunction of sperm centrosome is a possible cause of human fertilization failure. However, little information is available regarding human sperm centrosomal function during fertilization in clinically assisted reproductive technology. To assess the human sperm centrosomal function, we examined sperm aster formation and pronuclear decondensation following intracytoplasmic sperm injection (ICSI) with human sperm into the bovine egg using a Piezo-driven pipette and ethanol activation of eggs. After human sperm incorporation into bovine egg, we observed that the sperm aster was organized from sperm centrosome, and that the sperm aster was enlarged as the sperm nuclei underwent pronuclear formation. The sperm aster formation rate at 6 h post-ICSI and the male pronuclear formation rate at 8-12 h post-ICSI were 60.0% and 83.3%, respectively. No difference of the sperm aster formation rate and the male pronuclear formation rate was observed between eggs activated with ethanol and eggs without artificial activation. We concluded that this heterologous Piezo-ICSI system into bovine egg can be a novel assay for human sperm centrosomal function, and it is possible to explicate a course of fertilization failure that was unknown until now.  相似文献   

18.
In most bird species, pairs copulate many times before egg laying. The exact function of repeated inseminations (i.e. successful copulations) is unknown, but several suggestions have been made. We tested the hypothesis that repeated inseminations are required to ensure fertilization of eggs, by using an experimental method where free-ranging male collared flycatchers (Ficedula albicollis) were prevented from inseminating their mates. We show that egg fertility was lower when females had not copulated during the studied part of their fertile period. By counting sperm on the inner perivitelline layer of eggs, we estimated that a minimum of 86 sperm must reach the site of fertilization to ensure average fertility. Using the timing of inseminations and the numbers of sperm on successive eggs, we show that repeated copulations are necessary to achieve an average rate of fertilization of a single clutch. Our results thus provide evidence that repeated inseminations function to ensure fertilization success. We discuss possible constraints on sperm production and utilization that may have contributed to this pattern.  相似文献   

19.
The present study examined the role of the cytoskeleton in sperm entry and migration through the egg cytoplasm during fertilization in the zebra mussel, Dreissena polymorpha (Bivalvia: Veneroida: Dreissenidae). Fertilization in this freshwater bivalve occurs outside the mantle cavity, permitting detailed observations of fertilization. After its initial binding to the egg surface, the sperm is incorporated in two stages: (1) a gradual incorporation of the sperm nucleus into the egg cortex, followed by (2) a more rapid incorporation of the sperm axoneme, and translocation of the sperm head through the egg cytoplasm. Initial incorporation into the egg cortex was shown to be microfilament dependent. Microfilaments were found in the sperm's preformed acrosomal filament, the microvilli on the egg surface, and in an actin-filled insemination cone surrounding the incorporating sperm. Treatment of eggs with cytochalasin B inhibited sperm entry in a dose- and time-dependent manner. Microtubule polymerization was not necessary for initial sperm entry. Following incorporation of the sperm head, the flagellar axoneme entered the egg cytoplasm and remained active for several minutes. Associated with the incorporated axoneme was a flow of cytoplasmic particles originating near the proximal end of the flagella. Inhibition of microtubule polymerization prevented entry of the sperm axoneme, and the subsequent cytoplasmic current was not observed. After sperm incorporation into the egg cortex, no appreciable microfilaments were associated with the sperm nucleus. A diminutive sperm aster was associated with the sperm nucleus during its decondensation, but no obvious extension toward the female pronucleus was observed. The sperm aster was significantly smaller than the spindle associated with the female pronucleus, suggesting a reduced role for the sperm aster in amphimixis.  相似文献   

20.
Morphological studies on the gametes and entry of the spermatozoan into the egg of the zebra danio, Brachydanio rerio, were conducted primarily with scanning electron microscopy. The spermatozoan showed a spherical head, which lacked an acrosome, a midpiece containing several mitochondria, and a flagellum. Observations of the unfertilized egg confirmed and extended prior studies showing a distinct cluster of microvilli on the plasma membrane, identified as the sperm entry site, beneath the inner micropylar aperture (Hart and Donovan, '83). The fertilizing spermatozoan attached to the sperm entry site within 5 seconds of the mixing of a gamete suspension. Binding to the egg microvilli appeared restricted to the equatorial surface of the spermatozoan. Fusion between the plasma membranes of the interacting gametes was followed by the formation of a distinct, nipple-shaped fertilization cone. The sperm head was partially incorporated into the fertilization cone cytoplasm by 60 seconds postinsemination. The incorporation of the entire sperm head, midpiece, and a portion of the flagellum occurred between 1 and 2 minutes. During this time, the fertilization cone shortened and was transformed into a massive, blister-like cytoplasmic swelling. Concurrently, upward movements of the ooplasm resulted in the gradual disappearance of the original depression in the egg surface containing the sperm entry site. The second polar body, fully developed by 10 minutes postinsemination, formed approximately 10-15 microns from the site of sperm penetration. Development of the fertilization cone, formation of the second polar body and exocytosis of cortical granules at the sperm entry site readily occurred in parthenogenetically activated eggs, indicating that these surface rearrangements do not require sperm binding and/or fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号