首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced Glycation End-products (AGE-s) were shown to exhibit a number of potentially harmful properties in contact with cells and tissues. As their concentrations increases with age, faster even in hyperglycemic individuals, they are considered important for aging- and age-associated pathologies, especially for athero-arteriosclerosis and type II diabetes. We describe here the methods used for the demonstration of a direct cytotoxicity of several AGE-products when added to human skin fibroblast cultures. This cytotoxicity was still demonstrable when cells, previously cultured with AGE-s, were transferred to new medium without AGE-s. This effect, the remanence of cytotoxicity in absence of AGE-s, suggests a certain degree of inheritance, possibly by epigenetic mechanisms, of the cytotoxic effect of AGE-s, mediated by the AGE-receptors (RAGE-s) and inhibited by free radical-scavengers, such as L-Carnosine, Catalase and Rhamnose-rich oligo- and polysaccharides. Such cytotoxicity can occur not only on the skin but also in other tissues. It appears thus that besides the crosslinking of collagen and other macromolecules, the products of the Maillard reaction can exert their harmful cytotoxic effects directly on the cells.  相似文献   

2.
Non enzymatic glycosylation( glycation) of proteins, described by L. C. Maillard in 1912, results in the formation of advanced glycation end products (AGE-s). These exhibit a number of harmful reactions, increasing with age and involved in several age-associated pathologies. In ocular pathology, their role was demonstrated at several levels of age-associated eye-diseases, such as the rigidification of cornea, in the separation of vitreous fibers from the hyaluronan jelly, which might result in retinal detachment. AGE-s are involved also in retinal microvascular alterations in diabetics as well as in age-related macular degeneration. We compared the cytotoxic effect of several AGE-s on human skin fibroblasts and corneal keratocytes. Keratocytes were shown to be much more resistant to the cytotoxic effect of several AGE-products than fibroblasts. This higher resistance of keratocytes to the free radical mediated cytotoxic effect of AGE-s might be the result of the constant exposure of cornea to UV-light possibly mediating the appearance of more efficient protective mechanisms during evolution.  相似文献   

3.
BACKGROUND: The Maillard reaction that leads to the formation of advanced glycation end-products (AGE) plays an important role in the pathogenesis of angiopathy in diabetic patients and in the aging process. Recently, it was proposed that AGE were not only created by glucose, but also by dicarbonyl compounds derived from the Maillard reaction, autoxidation of sugars and other metabolic pathways of glucose. In this study, we developed four types of non-carboxymethyllysine (CML) anti-AGE antibodies that recognized proteins modified by incubation with short chain sugars and dicarbonyl compounds. MATERIALS AND METHODS: AGE-modified serum albumins were prepared by incubation of rabbit serum albumin with glyceraldehyde, glycolaldehyde, methylglyoxal or glyoxal. After immunization of rabbits, four types of AGE-specific antisera were obtained that were specific for the AGE modification. To separate non-CML AGE antibodies (Ab) (non-CML AGE-Ab-2, -3, -4, and -5), these anti-AGE antisera were subjected to affinity chromatography on a matrix coupled with four kinds of AGE bovine serum albumin (BSA) or CML-BSA. These non-CML AGE antibodies were used to investigate the AGE content of serum obtained from diabetic patients on hemodialysis. RESULTS: Characterization of the four types of non-CML AGE antibodies obtained by immunoaffinity chromatography was performed by competitive ELISA and immunoblot analysis. Non-CML AGE-Ab-2 crossreacted with the protein modified by glyceraldehyde or glycolaldehyde. Non-CML AGE-Ab-3 and -Ab-4 specifically cross-reacted with protein modified by glycolaldehyde and methylglyoxal, respectively. NonCML AGE-Ab-5 cross-reacted with protein modified with glyoxal as well as methylglyoxal and glycolaldehyde. Three kinds of non-CML AGE (AGE-2, -4, and -5) were detected in diabetic serum as three peaks with apparent molecular weights of 200, 1.15, and 0.85 kD; whereas, AGE-3 was detected as two peaks with apparent molecular weights of 200 and 0.85 kD. CONCLUSION: We propose that various types of non-CML AGE are formed by the Maillard reaction, sugar autoxidation and sugar metabolism. These antibodies enable us to identify such compounds created by the Maillard reaction in vivo.  相似文献   

4.
Formation of flavour compounds in the Maillard reaction   总被引:6,自引:0,他引:6  
This paper discusses the importance of the Maillard reaction for food quality and focuses on flavour compound formation. The most important classes of Maillard flavour compounds are indicated and it is shown where they are formed in the Maillard reaction. Some emphasis is given on the kinetics of formation of flavour compounds. It is concluded that the essential elements for predicting the formation of flavour compounds in the Maillard reaction are now established but much more work needs to be done on specific effects such as the amino acid type, the pH, water content and interactions in the food matrix. It is also concluded that most work is done on free amino acids but hardly anything on peptides and proteins, which could generate peptide- or protein-specific flavour compounds.  相似文献   

5.
Maillard反应是食品加工和贮藏过程中发生的重要而最复杂的反应,在食品风味物质形成中发挥积极作用,但近二三十年来的研究也发现它可能存在的食品安全隐患。Maillard反应受氨基和羰基物质组成的影响,但其他物质对Maillard反应的干扰作用研究不多。本文综述了Maillard反应过程中抗氧化活性物质和自由基形成的特点,以及外源酚类可能在丙烯酰胺、呋喃、羟甲基糠醛等有害物质形成中发生的作用;在此基础上,提出了今后应研究的科学问题。  相似文献   

6.
The thermostable Pyrococcus furiosus beta-glycosidase was used for oligosaccharide production from lactose in a kinetically controlled reaction. Our experiments showed that higher temperatures are beneficial for the absolute as well as relative oligosaccharide yield. However, at reaction temperatures of 80 degrees C and higher, the inactivation rate of the enzyme in the presence of sugars was increased by a factor of 2 compared to the inactivation rate in the absence of sugars. This increased enzyme inactivation was caused by the occurrence of Maillard reactions between the sugar and the enzyme. The browning of our reaction mixture due to Maillard reactions was modeled by a cascade of a zeroth- and first-order reaction and related to enzyme inactivation. From these results we conclude that modification of only a small number of amino groups already gives complete inactivation of the enzyme.  相似文献   

7.
The interaction of reducing carbohydrates with proteins leads to a cascade of reactions that are known as glycation or Maillard reaction. We studied the impact of incubation of human serum albumin (HSA) with glucose, at various concentrations and incubation times, on the extent of HSA glycation and structural changes using circular dichroism (CD), fluorescence, and microviscometer techniques. The number of moles of glucose bound per mole of HSA (r), the number of reacted lysine and arginine residues, and the Amadori product formation during glycation were determined using 3-(dansylamino) phenyl boronic acid, fluorescamine, 9, 10 phenanthrenequinone, and p-nitroblue tetrazoliumchloride, respectively. The formation of advanced glycation end products (AGE) was detected using the autofluorescence characteristic of samples. We identified three stages of Maillard reaction for HSA upon incubation with the physiological level of glucose (0-630 mg/dl): the early, intermediate and late stages, which occurred after 7-14, 21, and >28 days of incubation, respectively. Structural information, Stokes radius, and 1-anilinonaphthalene-8-sulfonate (ANS) binding data indicated the formation of a molten globule-like state of HSA after 21 days of incubation with 35 mM (630 mg/dl) glucose. Thus, the extent of the Maillard reaction was influenced by the concentration of glucose and incubation time, such that longer exposure of HSA to glucose may have a more deleterious effect on its structure and especially on its half-life and turnover in the circulation. Our results suggest that in acute diabetes mellitus patients, HSA, after 21 days of glycation, passes through a molten globule-like state and may contribute to the pathogenesis of diabetes, and perhaps other diseases.  相似文献   

8.
Enzymatic reversal of the Maillard reaction is a growing area of research. Fructosyl amine oxidase enzymes (EC 1.5.3) have attracted recent attention through demonstration of their ability to deglycate Amadori products, low molecular weight intermediates formed during the early stage of the Maillard reaction. Although stopped assays have been described, a bottleneck in current studies is the lack of continuous kinetic assays. Here, we describe the development of a continuous, coupled enzyme assay and its successful application to determining optimal storage conditions and the steady-state kinetic parameters of an enzyme from this group, amadoriase I. A K(m)(app) of 11 microM and a K(cat)(app) of 3.5s(-1) were determined using this assay using fructosyl propylamine as a substrate, which differ from previous reports. This method was also used to test the activity of two site-directed mutants of amadoriase I, H357N and S370A, which were found to be catalytically inactive.  相似文献   

9.
The extra-weak chemiluminescence in the Maillard reaction caused by the reaction between L -lysine and D -arabinose was measured, and a linear relationship was found between the chemiluminescence and the amount of L -lysine added. After a 1-hour reaction equimolar amounts of D -arabinose and L -lysine were consumed regardless of the initial concentration of D -arabinose. The chemiluminescence of the Maillard reaction originates from Maillard reaction products formed by the equimolar reaction between sugar and amino acid and depends on the concentration of amino acid.  相似文献   

10.
11.
The non-enzymatic modification of proteins through the Maillard reaction plays an important role in the loss of seed viability during seed storage. In the present study we examined whether the Maillard reaction reduces the activities of scavenging enzymes in Vigna radiata (mung bean) seeds during storage. Seeds were stored under various conditions for different duration. Maillard products were monitored by measuring protein fluorescence, and the activities of glutathione reductase (GR), superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and peroxidase (POX) were determined. The accumulation of Maillard products in seed axes increased during storage with increasing moisture content and temperature, and was correlated with the decline in seed vigour. The activities of GR, CAT and APX decreased in proportion to the increase in Maillard products at all the moisture contents and temperatures tested. These enzymatic changes were also correlated with seed vigour. However, the activities of SOD and POX remained unchanged and appeared to be less sensitive to the Maillard reaction.  相似文献   

12.
The Maillard reaction, initiated by the nonenzymatic reaction of reducing sugar with protein, is proposed to play a significant role in protein aging and the complications of aging and diabetes. In this study, we detected and quantified some advanced glycation endproducts (AGEs) in human serum proteins of control and uremic patients by a highly selective and specific assay, electrospray ionization liquid chromatography–mass spectrometry–mass spectrometry (ESI-LC–MS–MS). From our results, levels of each AGEs in serum of uremic patients were significantly elevated, compared to age-matched controls. These results provide the evidence for increased modifications of proteins by Maillard reaction in uremia.  相似文献   

13.
The chemistry of Maillard or browning reactions of glycated proteins is being studied in model systems in vitro in order to characterize potential reaction pathways and products in biological systems. In previous work with the Amadori rearrangement product N alpha-formyl-N epsilon-fructoselysine (fFL), an analog of glycated lysine residues in proteins, we showed that fFL was oxidatively cleaved between C-2 and C-3 of the carbohydrate chain to yield N epsilon-carboxymethyllysine (CML) and D-erythronic acid. We then detected CML in proteins glycated in vitro, as well as in human lens proteins and collagen in vivo (Ahmed, M. U., Thorpe, S. R., and Baynes, J. W. (1986) J. Biol. Chem. 261, 4889-4894). This work provided an explanation for the origin of CML in human urine and evidence for non-browning pathways of the Maillard reaction in vivo. In this report we describe the identification of a second set of products resulting from oxidative cleavage of fFL between C-3 and C-4 of the sugar chain, i.e. 3-(N epsilon-lysino)-lactic acid (LL) and D-glyceric acid. The formation of LL from fFL was increased at slightly acid pH, representing about 30% of the yield of CML at pH 6.4, compared with 4% at pH 7.4 in phosphate buffer. By gas chromatography-mass spectroscopy, LL was detected in proteins glycated in vitro and then identified as a natural product in human lens proteins and urine. Our results indicate that oxidative degradation of Amadori adducts to proteins occurs in vivo, leading to formation and excretion of CML and LL. These non-browning pathways for reaction of Amadori compounds may be physiologically relevant mechanisms for averting potentially damaging consequences of the Maillard reaction.  相似文献   

14.
Glyceraldehyde (200 mM) and N alpha-acetyllysine (100 mM) were incubated in 0.2 M sodium phosphate buffer (pH 7.4) at 37 degrees C for a week. A major compound, glyceraldehyde-related Maillard reaction product, was purified from the reaction mixture using reverse phase (ODS)-HPLC. It was identified as 1-(5-acetylamino-5-carboxypentyl)-3-hydroxy-5-hydroxymethyl-pyridinium, named as GLAP (Glyceraldehyde derived Pyridinium compound), using NMR and MS analyses. It was suggested that GLAP as a novel advanced glycation end product (AGE) is one of the key compounds in the glyceraldehyde-related Maillard reaction.  相似文献   

15.
16.
The number of individuals diagnosed with type 2 diabetes mellitus, which is caused by insulin resistance and/or abnormal insulin secretion, is increasing worldwide, creating a strong demand for the development of more effective anti-diabetic drugs. However, animal-based screening for anti-diabetic compounds requires sacrifice of a large number of diabetic animals, which presents issues in terms of animal welfare. Here, we established a method for evaluating the anti-diabetic effects of compounds using an invertebrate animal, the silkworm, Bombyx mori. Sugar levels in silkworm hemolymph increased immediately after feeding silkworms a high glucose-containing diet, resulting in impaired growth. Human insulin and 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR), an AMP-activated protein kinase (AMPK) activator, decreased the hemolymph sugar levels of the hyperglycemic silkworms and restored growth. Treatment of the isolated fat body with human insulin in an in vitro culture system increased total sugar in the fat body and stimulated Akt phosphorylation. These responses were inhibited by wortmannin, an inhibitor of phosphoinositide 3 kinase. Moreover, AICAR stimulated AMPK phosphorylation in the silkworm fat body. Administration of aminoguanidine, a Maillard reaction inhibitor, repressed the accumulation of Maillard reaction products (advanced glycation end-products; AGEs) in the hyperglycemic silkworms and restored growth, suggesting that the growth defect of hyperglycemic silkworms is caused by AGE accumulation in the hemolymph. Furthermore, we identified galactose as a hypoglycemic compound in jiou, an herbal medicine for diabetes, by monitoring its hypoglycemic activity in hyperglycemic silkworms. These results suggest that the hyperglycemic silkworm model is useful for identifying anti-diabetic drugs that show therapeutic effects in mammals.  相似文献   

17.
It was found that the growth of Aeropyrum pernix was severely inhibited in a medium containing reducing sugars and tryptone due to the formation of Maillard reaction products. The rate of the Maillard browning reaction was markedly enhanced under aerobic conditions, and the addition of Maillard reaction products to the culture medium caused fatal growth inhibition.  相似文献   

18.
Plant Growth Regulation - The occurrence of water-soaked brown flesh in pear fruit is closely related to an activated biological Maillard reaction during the latter half of maturation. In this...  相似文献   

19.
Ribose 5-phosphate (R5P) undergoes the Maillard reaction with amines at significantly higher rates than most other sugars and sugar phosphates. The presence of an intramolecular phosphate group, which catalyzes the early stages of the Maillard reaction, provides the opportunity for the R5P molecule to undergo novel reaction paths creating unique Maillard products. The initial set of reactions leading to an Amadori product (phosphorylated) and to an alpha-dicarbonyl phosphate compound follows a typical Maillard reaction sequence, but an observed phosphate hydrolysis accompanying the reaction adds to the complexity of the products formed. The reaction rate for the loss of R5P is partially dependent on the pK(a) of the amine but also is correlated to the protonation of an early intermediate of the reaction sequence. In the presence of oxygen, a carboxymethyl group conjugated to the amine is a major product of the reaction of R5P with N-acetyllysine while little of this product is generated in the absence of oxygen. Despite lacking a critical hydroxyl group necessary for the Maillard reaction, 2-deoxyribose 5-phosphate (dR5P) still generates an Amadori-like product (with a carbonyl on the C-3 carbon) and undergoes phosphate cleavage. Two highly UV-absorbing products of dR5P were amine derivatives of 5-methylene-2-pyrrolone and 2-formylpyrrole. The reaction of dR5P with certain amines generates a set of products that exhibit an interesting absorbance at 340nm and a high fluorescence.  相似文献   

20.
Some blue pigments were formed in the D-xylose (1 M)-glycine (0.1 M) reaction system. A novel blue pigment, designated as Blue-M2 (blue Maillard intermediate-2), was identified as 5-[1,4-dicarboxymethyl-5-(2,3-dihydroxypropyl)-1,4-dihydropyrrolo[3,2-b]pyrrole-2-ylmethylene]-1,4-dicarboxymethyl-2-{5-[N-carboxymethyl(2,3,4-trihydroxytetrahydrofuran-2-yl)methylamino]-2-hydroxymethyl-4-(1,2,3-trihydroxypropyl)tetrahydrofuran-3-yl}-4,5-dihydropyrrolo-[3,2-b]pyrrole-1-ium. Blue-M2 is presumed to have been generated by the reaction between Blue-M1, which was identified as the major blue pigment in a previous paper (Hayase et al., Biosci. Biotechnol. Biochem., 63, 1512-1514 (1999)), and di-D-xyluloseglycine. Blue pigments are important Maillard reaction intermediates through the formation of melanoidins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号