首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using the combined Golgi-electron microscopy technique, we have determined the three-dimensional dendritic fields of the short visual fibres (svf 1–3) and first-order interneurons or L-fibres (L1-4) within the first optic ganglion (lamina) of the nocturnal bee Megalopta genalis. Serial cross sections have revealed that the svf type 2 branches into one adjacent neural unit (cartridge) in layer A, the most distal of the three lamina layers A, B and C. All L-fibres, except L1-a, exhibit wide lateral branching into several neighbouring cartridges. L1-b shows a dendritic field of seven cartridges in layers A and C, dendrites of L2 target 13 cartridges in layer A, L3 branches over a total of 12 cartridges in layer A and three in layer C and L4 has the largest dendritic field size of 18 cartridges in layer C. The number of cartridges reached by the respective L-fibres is distinctly greater in the nocturnal bee than in the worker honeybee and is larger than could be estimated from our previous Golgi-light microscopy study. The extreme dorso-ventrally oriented dendritic field of L4 in M. genalis may, in addition to its potential role in spatial summation, be involved in edge detection. Thus, we have shown that the amount of lateral spreading present in the lamina provides the anatomical basis for the required spatial summation. Theoretical and future physiological work should further elucidate the roles that this lateral spreading plays to improve dim-light vision in nocturnal insects. B.G. is grateful for grants from the Royal Physiographic Society, the Per Westlings Fond, the Foundation of Dagny and Eilert Ekvall and the Royal Swedish Academy of Sciences. E.J.W. would like to thank the Smithsonian Tropical Research Insitute, the Swedish Research Council, the Crafoord Foundation, the Wenner-Gren Foundation and the Royal Physiographic Society of Lund for their ongoing support.  相似文献   

2.
The apposition compound eye of a nocturnal bee, the halictid Megalopta genalis, is described for the first time. Compared to the compound eye of the worker honeybee Apis mellifera and the diurnal halictid bee Lasioglossum leucozonium, the eye of M. genalis shows specific retinal and optical adaptations for vision in dim light. The major anatomical adaptations within the eye of the nocturnal bee are (1) nearly twofold larger ommatidial facets and (2) a 4–5 times wider rhabdom diameter than found in the diurnal bees studied. Optically, the apposition eye of M. genalis is 27 times more sensitive to light than the eyes of the diurnal bees. This increased optical sensitivity represents a clear optical adaptation to low light intensities. Although this unique nocturnal apposition eye has a greatly improved ability to catch light, a 27-fold increase in sensitivity alone cannot account for nocturnal vision at light intensities that are 8 log units dimmer than during daytime. New evidence suggests that additional neuronal spatial summation within the first optic ganglion, the lamina, is involved.B.G. is thankful for travel awards from the Royal Physiographic Society, the Per Westlings Fond, the Foundation of Dagny and Eilert Ekvall and the Royal Swedish Academy of Sciences. E.J.W. is grateful for the support of a Smithsonian Short-Term Research Fellowship, the Swedish Research Council, the Crafoord Foundation, the Wenner-Gren Foundation and the Royal Physiographic Society of Lund for their ongoing support  相似文献   

3.
Summary The arrangement of first and second order neurons in an optic cartridge and the topographical relationships of the second order neurons within a cartridge and to groups of surrounding cartridges have been analyzed in the visual system of the bee, Apis mellifera, from light and electron microscope studies on Golgi preparations. At the level of the monopolar cell body layer, the nine retinula cell fibres of each ommatidium, the six short visual fibres arranged in a circle surrounding the three long visual fibres, become cartridges as a consequence of the appearance of the second order neurons (L-fibres) which join the R-fibre bundles. Two of the four different L-fibre types, L-1 and L-2, remain together in the centre of the cartridge throughout the lamina. The axons of the L-3 and L-4 fibres, however, have their position integrated into the circle formed by the endings of the short visual fibres. On the basis of further examination of light and especially electron microscopical Golgi material, the different L-fibres can be classified into four types which appear in each cartridge. The clear stratification in the first synaptic region (A, B and C) seems to be the best criterion for a morphological classification since such a classification necessarily also includes a functional basis. According to a naming system based on the position of the lateral processes, L-fibres with side branches in strata A, B and C are called L-1 fibres. Fibres with lateral processes in strata A and B are L-2 fibres; monopolar cell fibres with branches only in the second stratum B are L-fibres of type 3; and all monopolar cells with branches only in stratum C are called L-4 fibres. In addition to the branching pattern covering only the parent cartridge, two of the four fibre types (L-2 and L-4) have long collaterals reaching neighbouring cartridges: L-2 in stratum A and L-4 in stratum C. These collaterals presumably form a substrate for lateral interactions.  相似文献   

4.
Summary The synaptic relationships between and within receptor-cell axons (RCAs), first-order interneurones (L-fibres) and accessory fibres (acc) in the first optic ganglion (the lamina) of the worker bee were studied in serial sections with Golgi-EM and routine transmission electron microscopy. The ommatidium contains nine retinular (photoreceptor) cells all of which project as RCAs to a single optical cartridge in the lamina. Six of the RCAs end as short visual fibres (svf) in the lamina, while the remaining three, the so-called long visual fibres (lvf), pass the lamina and end in the second optic ganglion, the medulla. In addition to the RCAs and an unknown number of accessory fibres, the cartridge also contains four L-fibres (L 1–4). The spatial arrangement of the RCAs and L-fibres within a cartridge is constant throughout the depth of the lamina. Serial sections reveal a great number of chemical synapses interconnecting RCAs, L-and acc fibres. Double T-shaped presynaptic dense projections are surrounded and in close association with either spherical or flattened synaptic vesicles. The finding of gap junctions between and within identified RCAs and L-fibres suggest that these axons may be electronically coupled. A model for information processing in the lamina of the bee is suggested from observations of synaptic connectivity between and within fibres of one cartridge.  相似文献   

5.
Summary The nine receptor cells examined in each ommatidium of the butterfly Papilio aegeus aegeus can be named according to their positional orientation across the fused rhabdom. Six of them end as short visual fibres (svf) in the second stratum of the lamina, whereas the remaining three retinula cells (lvf) pass together with the lamina fibres (L-fibres) the first optic ganglion and the outer chiasma to end in the three most distal layers of the second optic ganglion, the medulla. The organization of the retinula-cell axons within the pseudocartridge and the cartridge remains almost uniform throughout the first optic ganglion. Five L-fibres, which have their origin in the fenestrated layer (FL), join each laminar cartridge before entering the neuropil of the first optic region. Four of these L-fibres (L-1, L-2, L-3 and L-4) could be definitely located and characterized using Golgi-stained light- and electron-microscopic techniques. Whereas L-1 and L-3 show a lateral branching pattern reaching only fibres of the same cartridge, L-2 and L-4 have long collaterals interconnecting several neighbouring cartridges in a characteristic pattern. Serial sections of silver-impregnated retinula-cell axons as well as L-fibres were investigated for their synaptic connectivity patterns between and within these fibres. These cellular interactions and possible information processing are discussed.  相似文献   

6.
The apposition compound eyes of gonodactyloid stomatopods are divided into a ventral and a dorsal hemisphere by six equatorial rows of enlarged ommatidia, the mid-band (MB). Whereas the hemispheres are specialized for spatial vision, the MB consists of four dorsal rows of ommatidia specialized for colour vision and two ventral rows specialized for polarization vision. The eight retinula cell axons (RCAs) from each ommatidium project retinotopically onto one corresponding lamina cartridge, so that the three retinal data streams (spatial, colour and polarization) remain anatomically separated. This study investigates whether the retinal specializations are reflected in differences in the RCA arrangement within the corresponding lamina cartridges. We have found that, in all three eye regions, the seven short visual fibres (svfs) formed by retinula cells 1–7 (R1–R7) terminate at two distinct lamina levels, geometrically separating the terminals of photoreceptors sensitive to either orthogonal e-vector directions or different wavelengths of light. This arrangement is required for the establishment of spectral and polarization opponency mechanisms. The long visual fibres (lvfs) of the eighth retinula cells (R8) pass through the lamina and project retinotopically to the distal medulla externa. Differences between the three eye regions exist in the packing of svf terminals and in the branching patterns of the lvfs within the lamina. We hypothesize that the R8 cells of MB rows 1–4 are incorporated into the colour vision system formed by R1–R7, whereas the R8 cells of MB rows 5 and 6 form a separate neural channel from R1 to R7 for polarization processing.This research was supported by the Swiss National Science Foundation (PBSKB-104268/1), the Australian Research Council (LP0214956) and the American Air Force (AOARD/AFOSR) (F62562-03-P-0227).  相似文献   

7.
Summary The gross structure as well as the neuronal and non-neuronal components of the lamina ganglionaris of the locust Schistocerca gregaria are described on the basis of light- and electron-microscopical preparations of Golgj (selective silver) and ordinary histological preparations. The array of optic cartridges within the lamina neuropile — their order and arrangement — and the composition of the cartridges are described. There are six types of monopolar neurons: three whose branches reach to other cartridges and three whose branches are confined to their own cartridges. Retinula axons terminate either in the lamina or the medulla neuropiles. There are three types of centrifugal neurons, two types of horizontal neuron, as well as glia and trachea in the lamina neuropile. The development of the lamina neuropile is described in terms of developing monopolar and centrifugal axons, growing retinula fibres, and composition of the developing optic cartridges.MSN was supported in part by a Fulbrights-Hays Scholarsship. We are grateful to the Science Research Council for its grant to PMJS.  相似文献   

8.
Each visual unit (ommatidium) of the compound eye of the honey bee contains nine retinula cells, six of which end as axons in the first synaptic ganglion, the lamina, and three in the second optic ganglion, the medulla. A technique allowing light- and electron microscopy to be performed on the same silver-impregnated sections has made it possible to follow all types of retinula axons of one ommatidium to their terminals in order to study the shape of the terminal branches with their position in the cartridge. 1. The axons of retinula cells 1-6 (numbered according to Menzel and Snyder, 1974) end as three different types of short visual fibres (svf) in the lamina; the axons of retinula cells 7-9 run through the lamina to terminate in the medulla and are known as long visual fibres (lvf). Retinula cells of each type are identified by the location of their cell bodies and by the direction of their microvilli. The retinula cells 1 and 4 (group I according to Gribakin, 1967) end as svf type 1 with three tassel-like branches in stratum B of the first synaptic region. The pair of cells 3, 6 and the pair 2, 5 (group II) end in the first synaptic region in stratum A. Cells 3 and 6 have forked endings, svf type 2, whereas cells 2 and 5 have tapered endings, svf type 3. The remaining retinula cells 7, 8 and 9 have long fibres. Nos. 7 and 8 (group III) have tapered endings and are termed lvf types 1 and 2, respectively. The 9th cell is the lvf type 3 with a highly branched ending. 2. The nine axons in the bundle from one ommatidium have relative positions which do not change from the proximal retina to the monopolar cell body layer. 3. By following silver-stained retinula cells and their corresponding axons, it is possible to describe mirror-image arrangements of fibres in the axon bundles in different parts of the eye. This correlation of numbered retinula cells with specific axon types, together with the highly organized pattern in an axon bundle, allows the correlation between histological and physiological findings on polarization and colour perception.  相似文献   

9.
Claims have been made for a canopy preference by large bees pollinating tropical flowers—without data or tests that support or refute this opinion. The working hypothesis for bee foraging behavior in three dimensions is that forager experience can produce stratum fidelity, just as rewarding foraging produces floral fidelity. Wideranging search behavior should allow bees to track spatiotemporal distribution of resources. A systematic study of 20 bee species and 10 genera: Apis, Trigona, Eulaema, Centris, Euglossa, Scaptotrigona, Partamona, Megalopta, Rhinetula,and Oxytrigonawas made in two forests in Panama. Two traps were operated simultaneously at canopy height and in the understory to test whether there were consistent stratum associations. Studies were continuous for 1 and 8 years. The only high-canopy foragers were two nocturnal bees, all the rest flew at both heights with similar probability or consistently came to lower traps. Large euglossines showed a tendency to forage high, which was directly related to their capacity for heat loss during flight, compared to smaller euglossines. They are also more conspicuous in warning coloration, another expected correlate of foraging more often in the open. Although large variance in stratum association predominates, some medium-sized diurnal forest bees avoid the exposed upper canopy, while some nocturnal bees tend to forage there.  相似文献   

10.
Exchange of liquid food among adults (trophallaxis) is documented for the first time in New World sweat bees (Halictinae). Megalopta genalis and M. ecuadoria are facultatively social, and in social groups foragers regularly give food to the oldest resident female bee, which dominates social interactions. In turn, the oldest resident sometimes re-distributes this food, and shares it with younger foragers. Food is sometimes offered freely, but often the dominant bee exhibits escalating aggressive behavior until she is fed, whereupon she immediately ceases to be aggressive. The occurrence of trophallaxis in a species with mass-provisioned larvae provides an opportunity to examine the ritualization of social behavior. Trophallaxis also increases survivorship of males and females by almost 50% under experimental conditions, suggesting the behavior is also important in ecological contexts. Received 25 July 2005; revised 22 November 2005; accepted 23 December 2005.  相似文献   

11.
Summary Neuronal elements, i.e. first and second order neurons, of the first optic ganglion of three waterbugs, N. glauca, C. punctata and G. lacustris, are analyzed on the basis of light and electron microscopy.Eight retinula cell axons, leaving each ommatidium, disperse to different cartridges as they enter the laminar outer plexiform layer. Such a pattern of divergence is one of the conditions for neuronal superposition; it is observed for all three species of waterbugs. The manner in which the receptors of a single bundle of ommatidia split of within the lamina, whereby information from receptors up to three or five horizontal rows away can converge upon the same cartridge, differs among the species. Six of the eight axons of retinula cells R1-6, the short visual fibers end at different levels within the bilayered lamina, whereas the central pair of retinula cells R7/8, the long visual fibers, run directly through the lamina to a corresponding unit of the medulla. Four types of monopolar cells L1–L4 are classified; their branching patterns seem to be correlated to the splitting and termination of retinula cell axons. The topographical relationship and synaptic organization between retinula cell terminals and monopolar cells in the two laminar layers are identified by examination of serial ultrathin sections of single Golgi-stained neurons.An attempt is made to correlate some anatomical findings, especially the neuronal superposition, to results from physiological investigations on the hemipteran retina.  相似文献   

12.
Light intensity limits foraging activity in nocturnal and crepuscular bees   总被引:4,自引:0,他引:4  
A crepuscular or nocturnal lifestyle has evolved in bees severaltimes independently, probably to explore rewarding pollen sourceswithout competition and to minimize predation and nest parasites.Despite these obvious advantages, only few bee species are nocturnal.Here we show that the sensitivity of the bee apposition eyeis a major factor limiting the ability to forage in dim light.We present data on eye size, foraging times, and light levelsfor Megalopta genalis (Augochlorini, Halictidae) in Panama,and Lasioglossum (Sphecodogastra) sp. (Halictini, Halictidae)in Utah, USA. M. genalis females forage exclusively during twilight,but as a result of dim light levels in the rain forest, theyare adapted to extremely low intensities. The likely factorlimiting their foraging activity is finding their nest entranceon return from a foraging trip. The lowest light intensity atwhich they can do this, both in the morning and the evening,is 0.0001 cd m–2. Therefore, they leave the nest at dimmerlight levels in the morning than in the evening. Lasioglossum(Sphecodogastra) foraging is limited by light intensity in theevening, but probably by temperature in the morning in the temperateclimate of Utah. We propose that the evolution of nocturnalityin bees was favored by the large variance in the size of females.  相似文献   

13.
Numerous studies have investigated using oxalic acid (OA) to control Varroa mites in honey bee colonies. In contrast, techniques for treating package bees with OA have not been investigated. The goal of this study was to develop a protocol for using OA to reduce mite infestation in package bees. We made 97 mini packages of Varroa-infested adult bees. Each package contained 1,613 ± 18 bees and 92 ± 3 mites, and represented an experimental unit. We prepared a 2.8% solution of OA by mixing 35 g OA with 1 l of sugar water (sugar:water = 1:1; w:w). Eight treatments were assigned to the packages based on previous laboratory bioassays that characterized the acute contact toxicity of OA to mites and bees. We administered the treatments by spraying the OA solution directly on the bees through the mesh screen cage using a pressurized air brush and quantified mite and bee mortality over a 10-day period. Our results support applying an optimum volume of 3.0 ml of a 2.8% OA solution per 1,000 bees to packages for effective mite control with minimal adult bee mortality. The outcome of our research provides beekeepers and package bee shippers guidance for using OA to reduce mite populations in package bees.  相似文献   

14.
Summary The ultrastructure of the neural lobe of the lizard, Anolis carolinensis, was studied after fixation in a threefold aldehyde solution. The neural lobe appeared as narrow vertical diverticula separated from one another and from the pars intermedia by a continuous vascular septum. No nerves passed through this septum. The ependymal, fibrous and external layers were readily recognized. Peptidergic fibres were the main component of the fibrous layer. The peptidergic endings were in intimate contact with the ependymal cells, suggesting that the ependyma mediates the release of neural lobe peptides. The external layer contained ependymal end-feet and numerous aminergic terminals, ending directly on the perivascular basal lamina and/or on the ependymal end-feet. The functional aspects are discussed in terms of intermediate lobe control. The findings suggest that aminergic substances take part in the control of the intermedia, but do not exclude the involvement of peptide hormones.Supported by grants from the Swedish Natural Science Research Council and the Royal Physiographic Society of LundThe authors are indebted to Mrs. Lena Sandell for valuable technical assistance and to Miss Inger Norling and the late Mr. Lajos Erdös for photographic aid  相似文献   

15.
The neurons of the first optic ganglion (the lamina) in the desert ant, Cataglyphis bicolor, have been studied with the light microscope after Golgi silver impregnation. The different types of retinal and laminal fibres and their configuration are compared with the results obtained in the bee. The first synaptic region in the visual system of the ant lies proximally to the fenestrated layer below the basement membrane and the layer containing the monopolar cell bodies. The synaptic region can be separated into three morphologically different zones: (1) The most distal layer where the short visual fibres end at two different levels. The short visual fibres and some laminal fibres (monopolar cell fibres) also show lateral elements in this region. (2) The second layer appears almost free of branches of retinal and laminal fibres. (3) The most proximal layer, which has a characteristically dense horizontal structure resulting from the lateral elements of long visual, centrifugal, monopolar and tangential fibres. Nine cell axons arising from each ommatidium leave the retina. Six of these are short visual fibres and end at two different levels in the lamina. Three different types of short visual fibres can be distinguished by their different terminal depths and lateral branching pattern. The remaining three fibres, the long visual fibres, terminate in the medulla. They can be distinguished from each other by their lateral elements in the lamina neuropile. The five morphologically different laminal fibre types (axons of the monopolar cells in the lamina) have different shapes and different arborizations at different levels. Tangential, centrifugal and incerta sedis-fibres, which originate either from cell bodies in the cell body layer at the periphery of the outer chiasma or more centrally, terminate in the synaptic region of the lamina. Consideration is given to the clearly demarkated arrangement and length of the branching pattern of retinal and laminal fibres at different levels of the synaptic region of the lamina. In addition, a hypothetical connectivity pattern is discussed.  相似文献   

16.
Summary The distribution of putative cholinergic neurons in the lamina of the blowfly Calliphora erythrocephala was studied by immunocytochemical and histochemical methods. Three different antibodies directed against the AChsynthesizing enzyme, choline acetyltransferase (ChAT), revealed a cholinergic population of fibres running parallel to the laminar cartridges, which have branch-like structures at the distal lamina border. Cell bodies in the chiasma next to the lamina border were also labelled by the anti-ChAT antibodies. Monopolar cell bodies in the nuclear layer were faintly labelled. The distribution of the acetylcholine hydrolyzing enzyme, acetylcholine esterase (AChE), was revealed by histochemical staining and was similar to the ChAT immunocytochemistry. The arrangement of ChAT positive fibres in transverse and longitudinal sections and the distribution of AChE stained fibres indicate that the amacrine cells of the lamina are cholinergic cells.We dedicate this work to Prof. F. Zettler who passed away in fall 1988: K.-H. Datum, I. Rambold  相似文献   

17.
Studies of Varroa destructor orientation to honey bees were undertaken to isolate discrete chemical compounds that elicit host-finding activity. Petri dish bioassays were used to study cues that evoked invasion behaviour into simulated brood cells and a Y-tube olfactometer was used to evaluate varroa orientation to olfactory volatiles. In Petri dish bioassays, mites were highly attracted to live L5 worker larvae and to live and freshly freeze-killed nurse bees. Olfactometer bioassays indicated olfactory orientation to the same type of hosts, however mites were not attracted to the odour produced by live pollen foragers. The odour of forager hexane extracts also interfered with the ability of mites to localize and infest a restrained nurse bee host. Varroa mites oriented to the odour produced by newly emerged bees (<16 h old) when choosing against a clean airstream, however in choices between the odours of newly emerged workers and nurses, mites readily oriented to nurses when newly emerged workers were <3 h old. The odour produced by newly emerged workers 18–20 h of age was equally as attractive to mites as that of nurse bees, suggesting a changing profile of volatiles is produced as newly emerged workers age. Through fractionation and isolation of active components of nurse bee-derived solvent washes, two honey bee Nasonov pheromone components, geraniol and nerolic acid, were shown to confuse mite orientation. We suggest that V. destructor may detect relative concentrations of these compounds in order to discriminate between adult bee hosts, and preferentially parasitize nurse bees over older workers in honey bee colonies. The volatile profile of newly emerged worker bees also may serve as an initial stimulus for mites to disperse before being guided by allomonal cues produced by older workers to locate nurses. Fatty acid esters, previously identified as putative kairomones for varroa, proved to be inactive in both types of bioassays.  相似文献   

18.
Non-infested, young adult honey bees (Apis mellifera L.) of two stocks were exposed to tracheal mites (Acarapis woodi (Rennie)) in infested colonies to determine how divergent levels of susceptibility in host bees differentially affect components of the mite life history. Test bees were retrieved after exposure and dissected to determine whether resistance is founded on the reduced success of gravid female (foundress) mites to enter the host tracheae, on the suppressed reproduction by foundress mites once established in host tracheae or on both. Cohorts of 30–60 bees from each of ten resistant colonies and eight susceptible colonies were tested in eight trials (three to five colonies per stock per trial) having exposure durations of 4, 9 or 21 days. The principal results were that lower percentages of resistant bees than of susceptible bees routinely became infested by foundress mites, individual infested susceptible bees often had more foundress mites than individual infested resistant bees did and mite fecundity was similar in both host types. The infestation percentage results corresponded well with similar results from a prior field test of these stocks and, thus, suggest that the bioassay is useful for assessing honey bee resistance to A. woodi.  相似文献   

19.
1. Ptilothrix plumata (Hymenoptera) is a neotropical solitary bee that nests in bare, sandy soils. Data on the biology and behaviour of this species are provided. Egg‐to‐adult development time of a neotropical solitary bee and its parasitoids is quantified for the first time. 2. The bee showed huge variability in egg‐to‐adult development time. There are two categories of eggs relative to adult emergence. The same season eggs are those from which adults emerge in the same reproductive season in which the eggs were laid. Adults from next season eggs emerge in the next dry reproductive season. This variability in egg‐to‐adult development time is reached through prepupal diapause. The bee larval parasitoids Leucospis genalis (Hymenoptera) and Anthrax sp. (Diptera) showed similar range in their development times. The data show that diapause is controlled by season. 3. By synchronising adult emergence, this variability in egg‐to‐adult development time facilitates mate finding, and population recruitment is a consequence of the bees avoiding the unfavourable reproductive season.  相似文献   

20.
Summary The organization, characterization and connectivity patterns of four different interneurone types were studied with the use of Golgi light- and electron-microscopic techniques. All four cell types originate in the outer chiasma; they have an efferent end-branch in the lamina and an afferent one terminating in the distal region of the second optic ganglion, the medulla. These interneurones are referred to as:(i) Garland-cell: The efferent fibre has on its tangential branch numerous centripetal side branches, so-called garlands, which synapse with first- and second-order visual cells. (ii) Y-cell: The lamina branch bifurcates before entering the lamina. It innervates two neighbouring cartridges. Synaptic contacts were seen in two different laminar strata where bottle-brush-like collaterals occurred. (iii) Single bottle-brush cell: The efferent part has only one centrifugal branch, which can be compared morphologically and in terms of synaptology with those of the Y-cell. (iv) Triptychcell: The lamina component innervates three neighbouring cartridges at three different laminar layers interconnecting different first- and second-order visual neurones.The present study provides some essential qualitative and quantitative fine-structural information, which — when compared with adequate physiological data — may lead to a better understanding of the function of the first visual information-processing centre of the bee.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号