首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
培养于麦草粉上的白腐担子菌粗毛栓菌分泌胞外木质纤维素降解酶(纤维素酶、木聚糖酶、漆酶、锰过氧化物酶和木质素过氧化物酶)。经过超滤、盐析、离子交换层析、凝胶过滤和活性聚丙烯酰胺凝胶电泳等步骤,获得了初步纯化的锰过氧化物酶组分。利用变性聚丙烯酰胺凝胶电泳和等电点聚焦技术所测定的锰过氧化物酶的相对分子质量和等电点分别为35.7 ku和pI 2.8。研究结果表明,所纯化的锰过氧化物酶在407nm处具有最大光吸收峰,该酶最适作用pH值和温度分别为pH 5.3和35℃。  相似文献   

2.
[目的]从一株白腐菌Trametes sp.SQ01中获得一种新型的锰过氧化物酶,探讨该酶的底物特异性和对过氧化氢的耐性,以及其对三苯甲烷类染料的脱色能力.[方法]通过丙酮沉淀和DEAE-cellulose 52柱层析法纯化锰过氧化物酶.利用UV-2010紫外可见分光光度法研究锰过氧化物酶对过氧化氢的耐性,同时,用紫外可见分光光度计对三苯甲烷类染料脱色效果进行分析.[结果]通过两步纯化,获得了均一性的锰过氧化物酶.该酶的最适pH和温度分别是4.5和70℃,在pH 3.0-8.0时,酶活相对稳定.该酶在二价锰离子存在下能够氧化2,6-二甲氧基苯酚、愈创木酚、2,2'-连氮-双-(3-乙基苯并噻唑啉磺酸)和过氧化氢等化合物,同时也能作用二价锰离子.在与这些底物反应中,最适底物为过氧化氢(Km为3.7 tmmol/L).该酶具有抗过氧化氢漂白能力,锰过氧化物酶与高浓度的过氧化氢(2.5 mmol/L)作用60 min后仍能保持70%的活性.在所测试的染料中,锰过氧化物酶对结晶紫的脱色率最高达到65.8%.二价锰离子和过氧化氢对锰过氧化物酶脱色能力的影响进行研究,与孔雀绿相比,锰离子和过氧化氢对活性艳蓝脱色的影响很小.[结论]Trametes sp.SQ01锰过氧化物酶对过氧化氢的耐受性,以及对三苯甲烷类染料的高效脱色能力表明该酶在染料脱色降解方面有着广阔的应用前景.  相似文献   

3.
担子菌PM2在限氮液体培养下,分泌木质素过氧化物酶和锰过氧化物酶;藜芦醇、吐温 80的补充,提高了该菌锰过氧化物酶的产生,获得的最大锰过氧化物酶Mnp酶活为254.2u/L、190.2 u/L,分别是对照的3.4倍和2.5倍。选择三种偶氮染料,在染料体系下,进一步分析藜芦醇、吐温 80对担子菌PM2产过氧化物酶及染料脱色的影响。结果表明,担子菌PM2分泌的锰过氧化物酶Mnp与染料脱色有关,脱色程度受其分子结构特征影响;吐温80的补充,更有利于染料的脱色降解,48h后三种染料均可达到80%以上的脱色率。  相似文献   

4.
杨秀清  张新宪 《微生物学报》2016,56(6):1044-1055
【目的】在对白腐菌栓菌(Trametes sp.)SQ01锰过氧化物酶(MnP)纯化的基础上,通过MnP对HOPDAs的转化实验,了解白腐菌MnP对2-羟基-6-氧-6-苯基-2,4-己二烯酸(HOPDA)及其衍生物的作用,揭示MnP新的催化特性。【方法】利用紫外可见光谱法分析锰过氧化物酶对10种不同取代基的HOPDAs转化情况,并对锰过氧化物酶的稳态动力学参数进行了测定;红外光谱法分析了HOPDA及其产物的分子结构。【结果】锰过氧化物酶可以转化HOPDA及其卤代HOPDAs,特别是锰过氧化物酶可以催化3,8,11-3Cl HOPDA,而这一物质几乎不能被联苯水解酶(2-羟基-6-氧-6-苯基-2,4-己二烯酸水解酶)和红球菌(Rhodococcus sp.)R04转化。稳态动力学分析表明,在5种HOPDAs中,HOPDA是锰过氧化物酶的最适底物,3,10-2F HOPDA的转化效率(k_(cat)/K_m)是最高的。紫外可见光谱分析表明,锰过氧化物酶在转化HOPDA及其衍生物时最大吸收峰在可见光区均会发生蓝移。红外分析表明,锰过氧化物酶可以使HOPDA的共轭双烯转化为单烯,C_β上的羟基消失。【结论】锰过氧化物酶能够有效降解HOPDA及其衍生物,这为联苯及其中间代谢物的顺利降解提供了新的策略。  相似文献   

5.
白腐真菌分泌的锰过氧化物酶是木质素降解酶系统的主要组分,对木质素解聚,纸浆和染料的脱色均有重要作用.利用裂褶菌F17在自行设计的通气托盘式反应器中,以松木屑、稻草及黄豆粉为混合营养基质进行固态发酵生产锰过氧化物酶.在自制通气托盘式反应器中,裂褶菌F17能够产生锰过氧化物酶,发酵96 h时,最高酶活力达到13.51 U/...  相似文献   

6.
通过诱变得到十一株木素过氧化物酶酶活降低的黄孢原毛平革菌(Phanerochaetechrysosporium)突变株,用灰色理论分析了其木素过氧化物酶类的产生与木素降解能力间的相关性,并从中筛选到一株木素过氧化物酶缺陷、锰过氧化物酶酶活明显降低的突变株,其木素降解能力为原始菌株的80%左右。该菌粗酶液作用于纤维素酶酶解杉木木素和天然褐腐木素,可产生小分子的木素降解产物,此反应不需H2O2参与。红外光谱分析表明粗酶液对木素的作用主要为氧化作用,因此推测此突变株粗酶液中含有不同于木素过氧化物酶和锰过氧化物酶的与木素氧化降解有关的酶类  相似文献   

7.
王宜磊 《生物技术》2003,13(1):9-10
采用单因子相互比较法研究了不同碳素和氮素对彩绒革盖菌胞外漆酶,愈创木酚氧化酶,多酚氧化酶,锰过氧化物酶等木素降解酶分泌的影响,结果淀粉作碳源,干酪素作氮源有利于漆酶的分泌,麦芽粉作碳源,酵母膏作氮源有利于愈创木酚氧化酶和多酚氧化酶的分泌,淀粉作碳源,玉米粉作氮源有利于锰过氧化物酶的分泌。  相似文献   

8.
彩绒革盖菌CV—8漆酶活性的初步研究   总被引:21,自引:4,他引:21  
木质素是一种高度复杂的不定形的芳香族化合物,是仅次于纤维素的第二大再生有机资源,木质素的微生物降解及其有关酶类在制浆造纸工业和环境保护方面具有较大潜力。木质素的生物降解酶主要有木素过氧化物酶、漆酶、锰过氧化物酶和多酚氧化酶等。国外该方面的研究已有不少报道[1-5],但多集中在黄抱原毛平革菌(Phanerochaetechrysosporium)木素过氧化物酶和锰过氧化物酶方面的研究;Leatham和Stahmam曾研究了香菇(Lentinusedodes)的漆酶特性[6];国内有关研究报道较少[7,8],至今未见彩绒革盖菌漆酶研究的报道。我们就此做了些探讨…  相似文献   

9.
漆酶高产菌株的筛选及产酶条件研究   总被引:17,自引:0,他引:17  
木质素是一种高度复杂的不定形的芳香族化合物 ,是仅次于纤维素的第二大再生有机资源 ,木质素的微生物降解及其有关酶类在制浆造纸工业和环境保护方面具有较大潜力。木质素的生物降解酶主要有木素过氧化物酶、漆酶、锰过氧化物酶和多酚氧化酶等。国外已有该方面的研究报道[5~ 7,9,10 ] ,但多集中在黄孢原毛平革菌 (Phanerochaetechrysosporium)木素过氧化物酶和锰过氧化物酶方面的研究 ;Slomczyn ski等[8] 研究了Botrytiscinerea的漆酶特性 ;国内有关研究报道较少[3 ,4 ] ,筛选漆酶高…  相似文献   

10.
动物血红素过氧化物酶参与细菌氧化Mn(Ⅱ)的研究进展   总被引:1,自引:0,他引:1  
锰氧化物是自然环境中一种重要的高活性矿物,在多种元素的生物地球化学循环中起着重要作用。细菌对锰氧化物的形成具有推动作用。截至目前,研究者已从环境中分离出多株锰氧化细菌,并在氧化机理的研究上取得了一定的进展。目前细菌中已知的锰氧化酶包括多铜氧化酶和动物血红素过氧化物酶。与多铜氧化酶相比,动物血红素过氧化物酶在蛋白结构与氧化方式上都具有自己的特点。本文结合国内外最新研究结果,在氧化菌株、氧化酶和基因、氧化方式及影响因素等方面对动物血红素过氧化物酶参与细菌氧化Mn(Ⅱ)的研究进行了总结,对未来研究方向进行了展望。  相似文献   

11.
Lignin was mineralized in the experiments in which 14C-lignin was incubated with lignin peroxidase or manganese peroxidase in a tartrate buffer in the presence of cycloheximide-treated protoplasts obtained from the ligninolytic mycelia of Phanerochaete chrysosporium. The rate of lignin mineralization was dependent on the lignin peroxidase or manganese peroxidase concentration in the medium. In the experiments in which lignin was incubated with lignin peroxidase or manganese peroxidase, lignin was repolymerized irrespective of the presence of protoplasts mineralizing lignin, suggesting that an active degradation of lignin and repolymerization took place. Taking into account that lignin peroxidase and manganese peroxidase were the only extracellular enzymes in the experiments in which lignin was mineralized by the protoplasts, it is postulated that lignin peroxidase and/or manganese peroxidase can degrade lignin into small fragments which can then be further absorbed by the fungal cells and subsequently degraded to CO2.  相似文献   

12.
The extracellular enzyme manganese peroxidase is believed to degrade lignin by a hydrogen peroxide-dependent oxidation of Mn(II) to the reactive species Mn(III) that attacks the lignin. However, Mn(III) is not able to directly oxidise the non-phenolic lignin structures that predominate in native lignin. We show here that pretreatment of a non-phenolic lignin model compound with another extracellular fungal enzyme, cellobiose dehydrogenase, allows the manganese peroxidase system to oxidise this molecule. The mechanism behind this effect is demethoxylation and/or hydroxylation, i.e. conversion of a non-phenolic structure to a phenolic one, mediated by hydroxyl radicals generated by cellobiose dehydrogenase. This suggests that cellobiose dehydrogenase and manganese peroxidase may act in an extracellular pathway in fungal lignin biodegradation. Analytical techniques used in this paper are reverse-phase high-pressure liquid chromatography, gas chromatography connected to mass spectroscopy and UV-visible spectroscopy.  相似文献   

13.
Manganese peroxidase and lignin peroxidase are ligninolytic heme-containing enzymes secreted by the white-rot fungus Phanerochaete chrysosporium. Despite structural similarity, these peroxidases oxidize different substrates. Veratryl alcohol is a typical substrate for lignin peroxidase, while manganese peroxidase oxidizes chelated Mn2+. By a single mutation, S168W, we have added veratryl alcohol oxidase activity to recombinant manganese peroxidase expressed in Escherichia coli. The kcat for veratryl alcohol oxidation was 11 s-1, Km for veratryl alcohol approximately 0.49 mM, and Km for hydrogen peroxide approximately 25 microM at pH 2.3. The Km for veratryl alcohol was higher and Km for hydrogen peroxide was lower for this manganese peroxidase mutant compared to two recombinant lignin peroxidase isoenzymes. The mutant retained full manganese peroxidase activity and the kcat was approximately 2.6 x 10(2) s-1 at pH 4.3. Consistent with relative activities with respect to these substrates, Mn2+ strongly inhibited veratryl alcohol oxidation. The single productive mutation in manganese peroxidase suggested that this surface tryptophan residue (W171) in lignin peroxidase is involved in catalysis.  相似文献   

14.
The effect of several organic acids on the oxidation of Mn(II) catalyzed by manganese peroxidase was studied. Reactivities of manganese peroxidase and chemically prepared Mn(III) organic acid complexes towards phenolic compounds were compared. If lactate appears to be the best complexant for manganese peroxidase activity, chemically prepared Mn(III)—lactate complex is a less effective oxidant towards phenolic compounds than other Mn(III)—complexes. Our results agree with the hypothesis that certain organic acids are involved in the catalytic cycle of manganese peroxidase. Malonate and lactate seem to be the most attractive complexants for practical applications of manganese peroxidase and were used in enzymatic treatment of hardwood kraft pulp. Bleaching of kraft pulp was studied and after alkaline extraction, a significant decrease of kappa number was measured. The bleaching was enhanced in lactate buffer.  相似文献   

15.
Manganese supplementation of culture medium affected Phanerochaete flavido-alba FPL 106507 growth, glucose consumption and extracellular protein accumulation. Both the titre and time of detection of lignin peroxidase (LiP) were affected by manganese concentration in the medium, whereas with manganese peroxidase (MnP) only the titre was affected. In high Mn(II) containing cultures highest manganese peroxidase levels and a decrease in extracellular veratryl alcohol accumulation were observed. After FPLC a number of haemprotein peaks showing manganese peroxidase activity were detected in Mn(II) supplemented cultures. On the contrary, only haemprotein peaks of lignin peroxidase were detected in culture medium not supplemented with Mn(II).  相似文献   

16.
Summary The present work reports the production of laccase, lignin peroxidase and manganese peroxidase by the little studied white-rot fungus Phlebia floridensis under a variety of nutritional and physicochemical conditions. Among the different media and supplements the highest yields of laccase, lignin peroxidase and manganese peroxidase were recorded in the presence of sugarcane bagasse, wheat straw and rice straw, respectively. Laccase and manganese peroxidase activities were best expressed at a pH of 4.5 while lignin peroxidase was optimally active at a lower pH. Laccase proved to be much more thermostable as compared to the other two enzymes.  相似文献   

17.
Extracellular manganese peroxidase and laccase activities were detected in cultures of Dichomitus squalens (Polyporus anceps) under conditions favoring lignin degradation. In contrast, neither extracellular lignin peroxidase nor aryl alcohol oxidase activity was detected in cultures grown under a wide variety of conditions. The mineralization of 14C-ring-, -side chain-, and -methoxy-labeled synthetic guaiacyl lignins by D. squalens and the expression of extracellular manganese peroxidase were dependent on the presence of Mn(II), suggesting that manganese peroxidase is an important component of this organism's lignin degradation system. The expression of laccase activity was independent of manganese. In contrast to previous findings with Phanerochaete chrysosporium, lignin degradation by D. squalens proceeded in the cultures containing excess carbon and nitrogen.  相似文献   

18.
Extracellular manganese peroxidase and laccase activities were detected in cultures of Dichomitus squalens (Polyporus anceps) under conditions favoring lignin degradation. In contrast, neither extracellular lignin peroxidase nor aryl alcohol oxidase activity was detected in cultures grown under a wide variety of conditions. The mineralization of 14C-ring-, -side chain-, and -methoxy-labeled synthetic guaiacyl lignins by D. squalens and the expression of extracellular manganese peroxidase were dependent on the presence of Mn(II), suggesting that manganese peroxidase is an important component of this organism's lignin degradation system. The expression of laccase activity was independent of manganese. In contrast to previous findings with Phanerochaete chrysosporium, lignin degradation by D. squalens proceeded in the cultures containing excess carbon and nitrogen.  相似文献   

19.
Phanerochaete chrysosporium produces two classes of extracellular heme proteins, designated lignin peroxidases and manganese peroxidases, that play a key role in lignin degradation. In this study we isolated and characterized a lignin peroxidase-negative mutant (lip mutant) that showed 16% of the ligninolytic activity (14C-labeled synthetic lignin----14CO2) exhibited by the wild type. The lip mutant did not produce detectable levels of lignin peroxidase, whereas the wild type, under identical conditions, produced 96 U of lignin peroxidase per liter. Both the wild type and the mutant produced comparable levels of manganese peroxidase and glucose oxidase, a key H2O2-generating secondary metabolic enzyme in P. chrysosporium. Fast protein liquid chromatographic analysis of the concentrated extracellular fluid of the lip mutant confirmed that it produced only heme proteins with manganese peroxidase activity but no detectable lignin peroxidase activity, whereas both lignin peroxidase and manganese peroxidase activities were produced by the wild type. The lip mutant appears to be a regulatory mutant that is defective in the production of all the lignin peroxidases.  相似文献   

20.
A B Orth  M Denny    M Tien 《Applied microbiology》1991,57(9):2591-2596
Phanerochaete chrysosporium is a white rot fungus which secretes a family of lignin-degrading enzymes under nutrient limitation. PSBL-1 is a mutant of this organism that generates the ligninolytic system under nonlimiting conditions during primary metabolism. Lignin peroxidase, manganese peroxidase, and glyoxal oxidase activities for PSBL-1 under nonlimiting conditions were 4- to 10-fold higher than those of the wild type (WT) under nitrogen-limiting conditions. PSBL-1 was still in the log phase of growth while secreting the enzymes, whereas the WT had ceased to grow by this time. As in the WT, manganese(II) increased manganese peroxidase activity in the mutant. However, manganese also caused an increase in lignin peroxidase and glyoxal oxidase activities in PSBL-1. Addition of veratryl alcohol to the culture medium stimulated lignin peroxidase activity, inhibited glyoxal oxidase activity, and had little effect on manganese peroxidase activity in PSBL-1, as in the WT. Fast protein liquid chromatography (FPLC) analysis shows production of larger amounts of isozyme H2 in PSBL-1 than in the WT. These properties make PSBL-1 very useful for isolation of large amounts of all ligninolytic enzymes for biochemical study, and they open the possibility of scale-up production for pratical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号