首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Penicillin acylase (PA) is an industrial enzyme that is used to convert penicillin G into a precursor for semisynthetic penicillins. We have cloned a segment of DNA that codes for the two subunits required for PA activity. We also report the nucleotide sequence of a DNA fragment that codes for (i) the small subunit, (ii) the N-terminal region of the large subunit and (iii) a putative connecting peptide. These results confirm the existence of a common precursor for both peptides.  相似文献   

2.
3.
The penicillin acylase gene (pac) from Escherichia coli ATCC 11105 was cloned into pUC 9 and the resulting vector (pUPA-9), when transformed into E. coli strain 5K, allowed the constitutive overproduction of mature penicillin acylase when grown at 28 degrees C. The enzyme was purified from the periplasmic fraction of E. coli pUPA-9 by hydrophobic interaction chromatography and anion exchange. Crystals of penicillin acylase were grown in batch using polyethylene glycol 8000 as a precipitant. The crystals (space group P1) diffracted to beyond 2.3 A.  相似文献   

4.
The two constituent subunits of the enzyme penicillin acylase from Escherichia coli strain ATCC 11105 are derived from a single precursor polypeptide by post-translational processing. Mutant penicillin acylase precursors were constructed carrying insertions and deletions in various domains and they were analysed for their processing behaviour. It was found that an endopeptide region of appropriate size and an intact C-terminus were absolutely necessary for the maturation process. Internal deletions within the beta-subunit domain also prevented post-translational cleavage. Processing competence, therefore, was not merely determined by the amino acid sequence in the vicinity of the processing sites but relied on a correct overall conformation of the protein. The processing pathway in vivo proceeds via an intermediate comprising the alpha subunits plus endopeptide and is thus identical to the pathway which has been determined previously by in vitro analysis. The post-translational modification of the precursor is probably not carried out by a specific processing enzyme(s) as the heterologous expression of the penicillin acylase (pac) structural gene yielded processed and active enzyme in different enterobacteria and in a Pseudomonas species.  相似文献   

5.
K S Choi  J A Kim    H S Kang 《Journal of bacteriology》1992,174(19):6270-6276
Penicillin G acylase from Escherichia coli ATCC 11105 is synthesized from its precursor polypeptide into a catalytically active heterodimer via a complex posttranslational processing pathway. Substitutions in the pair of aminoacyl residues at the cleavage site for processing the small and large subunits were made. Their processing phenotypes and penicillin G acylase activities were analyzed. By the introduction of a prolyl residue at either position, the processing of the small subunit was blocked without a change in enzymatic activity. Four other substitutions had no effect. At the site for processing the large subunit, four substitutions out of the seven examined blocked processing. In general, penicillin G acylase activity seemed to be proportional to the efficiency of the large-subunit-processing step. Ser-290 is an amino acid critical for processing and also for the enzymatic activity of penicillin G acylase. In the mutant pAATC, in which Ser-290 is mutated to Cys, the precursor is processed, but there is no detectable enzymatic activity. This suggests that there is a difference in the structural requirements for the processing pathway and for enzymatic activity. Recombination analysis of several mutants demonstrated that the small subunit can be processed only when the large subunit is processed first. Some site-directed mutants from which signal peptides were removed showed partial processing phenotypes and reduced enzymatic activities. Their expression showed that the prerequisite for penicillin G acylase activity is the efficient processing of the large subunit and that the maturation of the small subunit does not affect the enzymatic activity.  相似文献   

6.
Cloned penicillin G acylase (PGA) from Escherichia coli ATCC 11105 was mutagenized in vivo using N-methyl-N-nitrosoguanidine. Mutants of PGA were selected by their ability to allow growth of the host strain E. coli M8820 with the new substrates phenylacetyl--alanyl-l-proline (PhAc-Ala-Pro) phthalyl-l-leucine (Pht-Leu) or phthalylglycyl-l-proline (Pht-Gly-Pro) as sole source of proline and leucine respectively. PGA mutants were purified and immobilized onto spherical methacrylate (G-gel). The immobilized form of mutant PGA selected with (PhAc-gbAla-Pro) hydrolyzed 95% of 9 mmol penicillin G 30% faster than wild-type PGA using the same specific activities. The specific activity of the soluble enzyme was 2.7-fold, and inhibition by phenylacetic acid was halved. Immobilized PGA mutant selected with Pht-Gly-Pro hydrolyzed penicillin G 20% faster than wild-type PGA. The K m of the soluble enzyme was increased 1.7-fold. Furthermore, the latter two mutants were also 3.6-fold more stable at 45° C than wild-type PGA. The specific activity of the mutant selected with Pht-Leu was 6.3-fold lower, and inhibition by phenylacetic acid was increased 13-fold.  相似文献   

7.
Penicillin acylase (PAC) precursor, proPAC, was overproduced in a soluble or insoluble form in the cytoplasm of Escherichia coli through the expression of the leader-less pac gene (ll-pac) devoid of the coding region for the signal peptide of PAC. Also, a portion of the overexpressed proPAC was further processed to form mature PAC, indicating that the posttranslational processing steps for PAC maturation can occur in both the periplasm and the cytoplasm of E. coli. The cultivation performance for ll-pac expression was limited by several factors, including (1) misfolding of proPAC, resulting in the aggregation of insoluble proPAC as inclusion bodies, (2) intracellular proteolysis, leading to the degradation of the overexpressed gene products, and (3) inefficient PAC maturation, limiting the formation of active PAC. The effect of coexpression of various cytoplasmic chaperones, including trigger factor, GroEL/ES, DnaK/J-GrpE, and their combinations, on ll-pac expression was investigated. Intracellular proteolysis of the overexpressed gene products could be prevented by coexpression of GroEL/ES. On the other hand, coexpression of trigger factor appeared to be able to facilitate the folding of soluble proPAC and to improve PAC maturation. The roles of trigger factor and GroEL/ES could be coordinated to significantly improve ll-pac expression performance. DnaK/J-GrpE had an effect for solublization of proPAC and perhaps, similar to trigger factor, for improving PAC maturation. The ll-pac expression performance was also significantly improved through the simultaneous coexpression of DnaK/J-GrpE and GroEL/ES. The results of the study suggest that the folding and/or processing of proPAC could be a major issue limiting the overproduction of PAC in E. coli and the bottleneck could be eliminated through the coexpression of appropriate chaperone(s).  相似文献   

8.
Penicillin G amidase (PGA) is a key enzyme for the industrial production of penicillin G derivatives used in therapeutics. Escherichia coli ATCC 11105 is the more commonly used strain for PGA production. To improve enzyme yield, we constructed various recombinant E. coli HB101 and ATCC 11105 strains. For each strain, PGA production was determined for various concentrations of glucose and phenylacetic and (PAA) in the medium. The E. coli strain, G271, was identified as the best performer (800 U NIPAB/L). This strain was obtained as follows: an E. coli ATCC 11105 mutant (E. coli G133) was first selected based on a low negative effect of glucose on PGA production. This mutant was then transformed with a pBR322 derivative containing the PGA gene. Various experiments were made to try to understand the reason for the high productivity of E. coli G271. The host strain, E. coli G133, was found to be mutated in one (or more) gene(s) whose product(s) act(s) in trans on the PGA gene expression. Its growth is not inhibited by high glucose concentration in the medium. Interestingly, whereas glucose still exerts some negative effect on the PGA production by E. coli G133, PGA production by its transformant (E. coli G271) is stimulated by glucose. The reason for this stimulation is discussed. Transformation of E. coli G133 with a pBR322 derivative containing the Hindlll fragment of the PGA gene, showed that the performance of E. coli G271 depends both upon the host strain properties and the plasmid structure. Study of the production by the less efficient E. coli HB101 derivatives brought some light on the mechanism of regulation of the PGA gene. (c) 1993 John Wiley & Sons, Inc.  相似文献   

9.
Penicillin G acylase is the key enzyme used in the industrial production of β-lactam antibiotics. This enzyme hydrolyzes penicillin G and related β-lactam antibiotics releasing 6-aminopenicillanic acid, which is an intermediate in the production of semisynthetic penicillins. To improve the enzymatic activity of Escherichia coli penicillin acylase, sequential rounds of error-prone polymerase chain reaction were applied to the E. coli pac gene. After the second round of evolution, the best mutant M2234 with enhanced activity was selected and analyzed. DNA sequence analyses of M2234 revealed that one amino acid residue (K297I), located far from the center of the catalytic pocket, was changed. This mutant (M2234) has a specific activity 4.0 times higher than the parent enzyme and also displayed higher stability at pH 10.  相似文献   

10.
11.
Penicillin acylase (EC 3.5.1.11) was completely inactivated with equimolar phenylmethane [35S]sulphonyl fluoride (PhMe35SO2F); the stability of the sulphonyl group in the modified protein was determined by measurement of the radioactivity in ultrafiltrates. In 8 M urea, the rate of loss of the sulphonyl group was similar to that observed in PhMeSO2F-inactivated chymotrypsin [Gold, A.M. & Fahrney, D. (1964) Biochemistry 3, 783-791]. Incubation of the PhMeSO2F-inactivated acylase with 0.7 M potassium thioacetate yielded an acetylthiol enzyme which was subsequently converted to a thiol-enzyme during incubation with 10 mM 6-aminopenicillanic acid. 4-Pyridyl-ethylcysteine was released by acid hydrolysis after reaction of the thiol-protein with 4-vinylpyridine. The rates of reaction of thiol-penicillin acylase with iodoacetic acid and 2,2'-dipyridyl disulphide were consistent with the presence of an incompletely accessible cysteinyl sidechain. After carboxymethylating the thiol-enzyme with iodo[2-3H]acetic acid, the label was shown by SDS/PAGE and sequencing analysis to be associated exclusively with the beta-chain NH2-terminal residue, indicating conversion of Ser290 to S-carboxymethyl-cysteine. Near-ultraviolet CD spectra showed the conformation of thiol-penicillin acylase to be indistinguishable from that of the native protein but the catalytic activity was less than 0.02% of that of the normal enzyme. The possibility that Ser290 acts as a nucleophile in catalysis is discussed.  相似文献   

12.
Penicillin G acylase is a periplasmic protein, cytoplasmically expressed as a precursor polypeptide comprising a signal sequence, the A and B chains of the mature enzyme (209 and 557 residues respectively) joined by a spacer peptide of 54 amino acid residues. The wild-type AB heterodimer is produced by proteolytic removal of this spacer in the periplasm. The first step in processing is believed to be autocatalytic hydrolysis of the peptide bond between the C-terminal residue of the spacer and the active-site serine residue at the N terminus of the B chain. We have determined the crystal structure of a slowly processing precursor mutant (Thr263Gly) of penicillin G acylase from Escherichia coli, which reveals that the spacer peptide blocks the entrance to the active-site cleft consistent with an autocatalytic mechanism of maturation. In this mutant precursor there is, however, an unexpected cleavage at a site four residues from the active-site serine residue. Analyses of the stereochemistry of the 260-261 bond seen to be cleaved in this precursor structure and of the 263-264 peptide bond have suggested factors that may govern the autocatalytic mechanism.  相似文献   

13.
In our studies with the penicillin V acylase of Bovista plumbea strains NRRL 3501 and NRRL 3824, we wanted to receive spores of these fungi. Surprisingly the fruiting bodies obtained in our work were not identical with those characteristic for Bovista plumbea. We identified them as Pleurotus ostreatus. For this reason we have to correct the name of the fungi known as Bovista plumbea NRRL 3501 and NRRL 3824.  相似文献   

14.
15.
Expression of the leaderless pac gene (LL pac), which lacks the coding region for the signal peptide of penicillin acylase (PAC), in Escherichia coli was conducted. It was demonstrated that the PAC precursor, proPAC, can be produced and even processed to form mature PAC in the cytoplasm, indicating that the posttranslational processing steps for PAC maturation can occur in both the periplasm and the cytoplasm of E. coli. The outcome of proPAC folding and PAC maturation could be affected by several factors, such as inducer type, proPAC formation rate, and chaperone availability. Misfolding of proPAC in the cytoplasm could be partially resolved through the coexpression of cytoplasmic chaperones, such as trigger factor, GroEL/ES, or DnaK/J-GrpE. The three chaperones tested showed different extents of the effect on proPAC solublization and PAC maturation, and trigger factor had the most prominent one. However, the chaperone-mediated solublization of proPAC did not guarantee its maturation, which is usually limited by the first autoproteolytic step. It was observed that arabinose could act as an effective inducer for the induction of LL pac expression regulated by the lac-derived promoter system of trc. In addition, PAC maturation could be highly facilitated by arabinose supplementation and coexpression of trigger factor, suggesting that the coordination of chaperone systems with proper culture conditions could dramatically impact recombinant protein production. This study suggests that folding/misfolding of proPAC could be a major step limiting the overproduction of PAC in E. coli and that the problem could be resolved through the search for appropriate chaperones for coexpression. It also demonstrates the analogy in the issues of proPAC misfolding as well as the expression bottleneck occurring in the cytoplasm (i.e., LL pac expression) and those occurring in the periplasm (i.e., wild-type pac expression).  相似文献   

16.
Summary Escherichia coli cells with penicillin acylase activity were permeabilized with aqueous solutions of the cationic detergent N-cetyl-N,N,N-trimethylammonium bromide (CTAB), at pH 8.0 and the activity was found to have almost doubled. The concentration of CTAB, the time and temperature of treatment were optimised for maximum enzyme activity and were found to be 0.2%, 20 min and 5°C respectively. Subsequently, the cell bound activity was retained for a longer period by chemical cross-linking with 0.1% glutaraldehyde.  相似文献   

17.
比较研究了几种破碎大肠杆菌细胞的方法,如渗透压法、超声波法、玻珠震碎法、玻珠研磨法、有机溶剂法、冻融法以及盐酸胍/EDTA法等,以确定出一种简单、快速、高效的破碎重组大肠杆菌细胞的方法获得粪产碱杆菌青霉素G酰化酶(AfPGA)用于后续试验。结果表明玻珠震碎法、超声波法和渗透压法是较优的细胞破碎方法,活力回收率分别为99.7%、78.4%、60.7%,其他方法均低于22%。而比活力以渗透压法为最高,达到4.40 U/mg。  相似文献   

18.
Incubation of penicillin acylase from Escherichia coli with phenylglyoxal or 2,3-butanedione results in enzyme inactivation. Both benzylpenicillin and phenylacetate protect the enzyme against the inactivation, indicating the presence of arginine at or near the catalytic site. The reactions follow pseudofirst order kinetics and the inactivation kinetics indicate the presence of a single essential arginine moiety.  相似文献   

19.
Penicillin G acylase (pac) gene was cloned into a stable asd + vector (pYA292) and expressed in Escherichia coli. This recombinant strain produced 1000 units penicillin G acylase g–1 cell dry wt, which is 23-fold more than that produced by parental Escherichia coli ATCC11105. This enzyme was purified to 16 units mg–1 protein by a novel two-step process.  相似文献   

20.
Penicillin G acylase gene from Bacillus megaterium ATCC 14945 has been isolated. Recombinant Escherichia coli clones were screened for clear halo forming activity on the lawn of Staphylococcus aureus ATCC 6538P using the enzymatic acylating reaction of 7-aminodeacetoxycephalosporanic acid (7-ADCA) and D-(alpha)-phenylglycine methylester. The gene was contained within a 2.8 kb DNA fragment and expressed efficiently when transferred from E. coli to Bacillus subtilis. A twenty times greater amount of enzyme was produced in B. subtilis transformant than that in B. megaterium. The purified enzyme from subcloned B. subtilis showed that the native enzyme consisted of two identical subunits, each with a molecular weight of 57,000. The enzyme was able to react on various cephalosporins, i.e., cephalothin, cefamandole, cephaloridine, cephaloglycin, cephalexin and cephradine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号