首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four mutants of human insulin-like growth factor I (hIGF I) have been purified from the conditioned media of yeast transformed with an expression vector containing a synthetic gene for hIGF I altered by site-directed mutagenesis. hIGF I has the sequence Phe-23-Tyr-24-Phe-25 which is homologous to a region in the B-chain of insulin. [Phe23,Phe24,Tyr25]IGF I, in which the sequence is altered to exactly correspond to the homologous sequence in insulin, is equipotent to hIGF I at the types 1 and 2 IGF and insulin receptors. [Leu24]IGF I and [Ser24]IGF I have 32- and 16-fold less affinity than hIGF I at the human placental type 1 IGF receptor, respectively. These peptides are 10- and 2-fold less potent at the placental insulin receptor, respectively. [Leu24]IGF I and [Ser24]IGF I have similarly reduced affinities for the type 1 IGF receptor of rat A10 and mouse L cells. Thus, the importance of the interaction of residue 24 with the receptor is conserved in several species. In three cell-based assays, [Leu24]IGF I and [Ser24]IGF I are full agonists with reduced efficacy compared to hIGF I. Desoctapeptide [Leu24]IGF I, in which the loss of aromaticity at position 24 is combined with the deletion of the carboxyl-terminal D region of hIGF I, has 3-fold lower affinity than [Leu24]IGF I for the type 1 receptor and 2-fold higher affinity for the insulin receptor.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A series of insulin-like growth factor I (IGF-I) structural analogs in which one or more of the three tyrosine residues were replaced with nonaromatic residues were produced and their binding properties characterized. The single point mutations, [Leu24]IGF-I, [Ala31]IGF-I, and [Leu60]IGF-I result in an 18-, 6-, or 20-fold loss in affinity, respectively, for the type 1 IGF receptor. Multiple mutations, [Ala31,Leu60]IGF-I, [Leu24, Ala31]IGF-I, [Leu24, Leu60]IGF-I, or [Leu24, Ala31, Leu60]IGF-I result in a 520-, 240-, 1200-, or greater than 1200-fold loss in affinity, respectively, at the type 1 IGF receptor. In contrast, none of the analogs display greater than a 2-fold loss in affinity for the acid-stable human serum binding proteins. At the insulin receptor, [Ala31]IGF-I and [Leu24]IGF-I are equipotent to and 5-fold less potent than IGF-I, whereas [Leu60]IGF-I and the multiple mutation analogs are inactive up to 10 microM. Analogs [Leu24]IGF-I, [Ala31]IGF-I, and [Leu24, Ala31]IGF-I are equipotent to IGF-I at the type 2 IGF receptor, whereas all analogs containing Leu60 demonstrate little measurable affinity at this receptor. Thus, Tyr24, Tyr31, and Tyr60 are involved in the high affinity binding of IGF-I to the type 1 IGF receptor, while Tyr60 is important for maintaining binding to the type 2 IGF receptor.  相似文献   

3.
In vitro evolution of amphioxus insulin-like peptide to mammalian insulin   总被引:2,自引:0,他引:2  
Guo ZY  Shen L  Gu W  Wu AZ  Ma JG  Feng YM 《Biochemistry》2002,41(34):10603-10607
By site-directed mutagenesis, six insulin residues related to the insulin-receptor interaction were grafted, partially or fully, onto the corresponding position of a recombinant amphioxus insulin-like peptide (ILP) that contained the A- and B-domains of the deduced amphioxus ILP. After fermentation, purification, and enzymatic cleavage, six insulin-like double-chain ILP analogues were obtained: [A2Ile]ILP, [B12Val, B16Tyr]ILP, [B25Phe]ILP, [A2Ile, B12Val, B16Tyr, B25Phe]ILP (four-mutated ILP), [A2Ile, B12Val, B16Tyr, B24Phe, B25Phe]ILP (five-mutated ILP), and [A2Ile, B12Val, B16Tyr, B24Phe, B25Phe, B26Tyr]ILP (six-mutated ILP). Circular dichroism analysis showed that such replacement did not significantly affect their secondary and tertiary structure compared with that of the wild-type ILP. The insulin-receptor-binding activity of the four-, five-, and six-mutated ILP was 0.14%, 11%, and 11% of native insulin, respectively; the other three ILP analogues acquired none of the detectable insulin-receptor-binding potency. The growth-promoting activities of the five- and six-mutated ILP were both about 50% of native insulin, while that of the wild-type ILP was not detectable. By structure-function-based mutagenesis, the completely inactive amphioxus ILP was converted into a molecule with moderate mammalian insulin activity. These results indicated the following: first, the grafted as well as those inborn insulin-receptor-binding related residues can form an insulin-receptor-binding patch on the ILP analogues; second, the ILP can be used as a scaffold molecule to investigate the role of the insulin residues; third, the natural evolution of amphioxus ILP to mammalian insulin is a possible process and can be mimicked in the laboratory.  相似文献   

4.
The residues A21Asn, B12Val, B16Tyr, B24Phe, B25Phe, B26Tyr and B27Thr, buried in the dimer of insulin, were identified by means of alanine-scanning mutagenesis. The receptor binding activity, in vivo biological potency and self-association properties of the seven single alanine human insulin mutants were determined. Four of the seven single alanine mutants, [B12Ala]human insulin, [B16Ala]human insulin, [B24Ala]human insulin and [B26Ala]human insulin, are monomeric insulin, which indicates that B12Val, B16Tyr, B24Phe and B26Tyr are crucial for the formation of insulin dimer. The monomeric [B16Ala]human insulin and [B26Ala]human insulin retain 27 and 54% receptor binding activity, respectively, and nearly the same in vivo biological potency compared with native insulin, so they could be developed as the fast-acting insulin.  相似文献   

5.
We have used site-directed mutagenesis of a synthetic gene for insulin-like growth factor (IGF) I to prepare three analogs in which specific residues in the A region are replaced with the corresponding residues in the A chain of insulin. The analogs are [Ile41, Glu45, Gln46, Thr49, Ser50, Ile51, Ser53, Tyr55, Gln56]IGF I (A chain mutant), in which residue 41 is changed from threonine to isoleucine and residues 42 to 56 of the A region are replaced, [Thr49, Ser50, Ile51]IGF I, and [Tyr55, Gln56]IGF I. These analogs are all equipotent to IGF I at the type 1 IGF receptor in human placental membranes, and in stimulating the incorporation of [3H]thymidine into DNA in the rat vascular smooth muscle cell line A10. However, the A chain mutant and [Thr49, Ser50, Ile51]IGF I have greater than 20-fold lower relative affinity for the type 2 IGF receptor of rat liver membranes, respectively. In contrast, [Tyr55, Gln56]IGF I has 7-fold higher affinity than IGF I for the type 2 IGF receptor. Residues 49, 50, and 51 in IGF I are Phe-Arg-Ser and are strictly conserved in IGF II. Residues 55 and 56 of IGF I and the corresponding residues in IGF II are Arg-Arg and Ala-Leu, respectively. Thus, the presence of the charged residues at these positions in IGF I appears to be responsible, in part, for the lower affinity of IGF I for the type 2 IGF receptor. In addition to the alterations in affinity for the type 2 IGF receptor, the A chain mutant has a 7-fold increase in affinity for insulin receptors, and [Thr49, Ser50, Ile51]IGF I has a 4-fold lower affinity for acid-stable human serum binding protein. These data strongly suggest that specific determinants in the A region of IGF I are important for maintaining binding to the type 2 IGF receptor, and that these determinants are different from those required for maintaining high affinity for the type 1 IGF receptor.  相似文献   

6.
Insulin and the insulin-like growth factors (IGFs) bind with high affinity to their cognate receptor and with lower affinity to the noncognate receptor. The major structural difference between insulin and the IGFs is that the IGFs are single chain polypeptides containing A-, B-, C-, and D-domains, whereas the insulin molecule contains separate A- and B-chains. The C-domain of IGF-I is critical for high affinity binding to the insulin-like growth factor I receptor, and lack of a C-domain largely explains the low affinity of insulin for the insulin-like growth factor I receptor. It is less clear why the IGFs have lower affinity for the insulin receptor. In this study, 24 insulin analogues and four IGF analogues were expressed and analyzed to explore the role of amino acid differences in the A- and B-domains between insulin and the IGFs in binding affinity for the insulin receptor. Using the information obtained from single substituted analogues, four multiple substituted analogues were produced. A "quadruple insulin" analogue ([Phe(A8), Ser(A10), Thr(B5), Gln(B16)]Ins) showed affinity as IGF-I for the insulin receptor, and a "sextuple insulin" analogue ([Phe(A8), Ser(A10), Thr(A18), Thr(B5), Thr(B14), Gln(B16)]Ins) showed an affinity close to that of IGF-II for the insulin receptor, whereas a "quadruple IGF-I" analogue ([His(4), Tyr(15), Thr(49), Ile(51)]IGF-I) and a "sextuple IGF-II" analogue ([His(7), Ala(16), Tyr(18), Thr(48), Ile(50), Asn(58)]IGF-II) showed affinities similar to that of insulin for the insulin receptor. The mitogenic potency of these analogues correlated well with the binding properties. Thus, a small number of A- and B-domain substitutions that map to the IGF surface equivalent to the classical binding surface of insulin weaken two hotspots that bind to the insulin receptor site 1.  相似文献   

7.
Four structural analogs of human insulin-like growth factor I (hIGF-I) have been prepared by site-directed mutagenesis of a synthetic IGF-I gene and subsequent expression and purification of the mutant protein from the conditioned media of transformed yeast. [Phe-1,Val1,Asn2, Gln3,His4,Ser8, His9,Glu12,Tyr15,Leu16]IGF-I (B-chain mutant), in which the first 16 amino acids of hIGF-I were replaced with the first 17 amino acids of the B-chain of insulin, has greater than 1,000-, 100-, and 2-fold reduced potency for human serum binding proteins, the rat liver type 2 IGF receptor, and the human placental type 1 IGF receptor, respectively. The B-chain mutant also has 4-fold increased affinity for the human placental insulin receptor. [Gln3,Ala4]IGF-I has 4-fold reduced affinity for human serum binding proteins, but is equipotent to hIGF-I at the types 1 and 2 IGF and insulin receptors. [Tyr15,Leu16]IGF-I has 4-fold reduced affinity for human serum binding proteins and 10-fold increased affinity for the insulin receptor. This peptide is also equipotent to hIGF-I at the types 1 and 2 IGF receptors. The peptide in which these four-point mutations are combined, [Gln3,Ala4,Tyr15,Leu16]IGF-I, has 600-fold reduced affinity for the serum binding proteins. This peptide has 10-fold increased potency for the insulin receptor, but is equipotent to hIGF-I at the types 1 and 2 IGF receptors. All four of these mutants stimulate DNA synthesis in the rat vascular smooth muscle cell line A10 with potencies reflecting their potency at the type 1 IGF receptor. These studies identify some of the domains of hIGF-I which are responsible for maintaining high affinity binding with the serum binding protein and the type 2 IGF receptor. In addition, these peptides will be useful in defining the role of the type 2 IGF receptor and serum binding proteins in the physiological actions of hIGF-I.  相似文献   

8.
With the aim to produce insulin-like growth factors (IGF) with enhanced specificity for the type 1 or type 2 IGF receptors, three mutants of IGF II have been prepared and expressed in NIH-3T3 cells. IGF II mutated at Tyr27 to Leu and Glu showed a 25- and 54-fold decrease in affinity for the type 1 IGF receptor and a 3.4- and 9.2-fold decrease in affinity for the type 2 IGF receptor. IGF II mutated at Phe48 to Glu showed a 18-fold decrease in affinity for the type 2 IGF receptor and a 2.8-fold decrease in affinity for the type 1 IGF receptor. These affinities were measured in radioreceptor assays using type 1 or 2 IGF receptor overexpressing cells. Data obtained on receptor cross-linking and thymidine incorporation assays confirmed the results of the radioreceptor assays. It is concluded that mutations of Tyr27 preferentially decrease binding to the type 1 IGF receptor and of Phe48 to the type 2 IGF receptor, either by the loss of a residue involved in receptor binding or by preferentially destabilizing the region involved in receptor binding.  相似文献   

9.
Melanin-concentrating hormone (MCH) is a neuropeptide present in the brain of all vertebrates. For the characterization of MCH receptors, a monoiodinated [Phe13, Tyr19]-MCH radioligand analogue was developed. The high susceptibility of [125I]-[Phe13, Tyr19]-MCH to oxidative damage and its very lipophilic nature made it necessary to develop new MCH radioligands. To increase the stability, native methionines were replaced by non-sulphur containing amino acid residues. In one analogue, the L-enantiomer of the phenylalanine residue at position 13 was substituted by the D-enantiomer, which increased the relative affinity of the ensuing [125I]-[D-Phe13, Tyr19]-MCH about 7-fold. The different analogues were iodinated by an enzymatic reaction and used for binding studies with mouse melanoma cells. [125I]-[Met(O)4,8, Phe13, Tyr19]-MCH and [125I]-[Hse4,8, Phe13, Tyr19]-MCH showed only about 19% of total binding and [125I]-[Ser4,8, Phe13, Tyr19]-MCH displayed about 44% of total binding when compared with [125I]-[Phe13, Tyr19]-MCH. Non-specific binding for all tracers was below 11% of total binding of [125I]-[Phe13, Tyr19]-MCH binding. [125I]-[D-Phe13, Tyr19]-MCH was used for saturation binding studies and revealed a KD of 122.7 +/- 15.3 pmol/l. This radioligand was further characterized by association and dissociation binding studies.  相似文献   

10.
We have produced and characterized the binding properties of three structural analogs of human insulin-like growth factor I (hIGF-I). These analogs are [1-62]hIGF-I, an analog lacking the carboxyl-terminal 8-amino acid D region of hIGF-I; [1-27, Gly4, 38-70]hIGF-I, an analog in which residues 28-37 of the C region of hIGF-I are replaced by a 4-reside glycine bridge; and [1-27,Gly4,38-62]hIGF-I, an analog with the C region glycine replacement and a D region deletion. The removal of the D region of hIGF-I has little effect on binding to the type 1 and type 2 insulin-like growth factor (IGF) receptors. [1-62]hIGF-I has 2-fold higher affinity for the insulin receptor and 4-fold higher affinity for IGF serum-binding proteins. The replacement of the C region of hIGF-I with a four-glycine span results in a 30-fold loss of affinity for the type 1 IGF receptor. However this analog has near normal affinity for the type 2 IGF receptor, the insulin receptor, and IGF serum-binding proteins. Incorporating the C region glycine replacement and the D region deletion into one analog does not affect binding to either the type 2 receptor or to IGF serum-binding proteins. As predicted from the single deletion analogs [1-27,Gly4,38-62]hIGF-I has reduced affinity for the type 1 IGF receptor (approximately 40-fold) and increased affinity for the insulin receptor (5-fold). These data indicate that determinants in the C region of hIGF-I are involved in maintaining high affinity binding to the type 1 IGF receptor and that neither the C region nor the D region are required for high affinity binding to the type 2 IGF receptor or to IGF serum-binding proteins.  相似文献   

11.
Current evidence supports a binding model in which the insulin molecule contains two binding surfaces, site 1 and site 2, which contact the two halves of the insulin receptor. The interaction of these two surfaces with the insulin receptor results in a high affinity cross-linking of the two receptor alpha subunits and leads to receptor activation. Evidence suggests that insulin-like growth factor-I (IGF-I) may activate the IGF-I receptor in a similar mode. So far IGF-I residues structurally corresponding to the residues of the insulin site 1 together with residues in the C-domain of IGF-I have been found to be important for binding of IGF-I to the IGF-I receptor (e.g. Phe(23), Tyr(24), Tyr(31), Arg(36), Arg(37), Val(44), Tyr(60), and Ala(62)). However, an IGF-I second binding surface similar to site 2 of insulin has not been identified yet. In this study, we have analyzed whether IGF-I residues corresponding to the six residues of the insulin site 2 have a role in high affinity binding of IGF-I to the IGF-I receptor. Six single-substituted IGF-I analogues were produced, each containing an alanine substitution in one of the following positions (corresponding insulin residues in parentheses): Glu(9) (His(B10)), Asp(12) (Glu(B13)), Phe(16) (Leu(B17)), Asp(53) (Ser(A12)), Leu(54) (Leu(A13)), and Glu(58) (Glu(A17)). In addition, two analogues with 2 and 3 combined alanine substitutions were also produced (E9A,D12A IGF-I and E9A,D12A,E58A IGF-I). The results show that introducing alanine in positions Glu(9), Asp(12), Phe(16), Leu(54), and Glu(58) results in a significant reduction in IGF-I receptor binding affinity, whereas alanine substitution at position 53 had no effect on IGF-I receptor binding. The multiple substitutions resulted in a 33-100-fold reduction in IGF-I receptor binding affinity. These data suggest that IGF-I, in addition to the C-domain, uses surfaces similar to those of insulin in contacting its cognate receptor, although the relative contribution of the side chains of homologous residues varies.  相似文献   

12.
Coetsee M  Millar RP  Flanagan CA  Lu ZL 《Biochemistry》2008,47(39):10305-10313
Molecular modeling showed interactions of Tyr (290(6.58)) in transmembrane domain 6 of the GnRH receptor with Tyr (5) of GnRH I, and His (5) of GnRH II. The wild-type receptor exhibited high affinity for [Phe (5)]GnRH I and [Tyr (5)]GnRH II, but 127- and 177-fold decreased affinity for [Ala (5)]GnRH I and [Ala (5)]GnRH II, indicating that the aromatic ring in position 5 is crucial for receptor binding. The receptor mutation Y290F decreased affinity for GnRH I, [Phe (5)]GnRH I, GnRH II and [Tyr (5)]GnRH II, while Y290A and Y290L caused larger decreases, suggesting that both the para-OH and aromatic ring of Tyr (290(6.58)) are important for binding of ligands with aromatic residues in position 5. Mutating Tyr (290(6.58)) to Gln increased affinity for Tyr (5)-containing GnRH analogues 3-12-fold compared with the Y290A and Y290L mutants, suggesting a hydrogen-bond between Gln of the Y290Q mutant and Tyr (5) of GnRH analogues. All mutations had small effects on affinity of GnRH analogues that lack an aromatic residue in position 5. These results support direct interactions of the Tyr (290(6.58)) side chain with Tyr (5) of GnRH I and His (5) of GnRH II. Tyr (290(6.58)) mutations, except for Y290F, caused larger decreases in GnRH potency than affinity, indicating that an aromatic ring is important for the agonist-induced receptor conformational switch.  相似文献   

13.
Five mutants of recombinant insulin-like growth factor-II (rIGF-II) that bound with high affinity to either the IGF-II/cation-independent mannose 6-phosphate (IGF-II/CIM6-P) or the IGF-I receptor were prepared by site-directed mutagenic procedures, expressed as fusion proteins in the larva of Bombyx mori or Escherichia coli, purified to homogeneity, renatured, and characterized in terms of their receptor binding affinities and specificities as well as their biological activities. Class I mutants in which Phe26, Tyr27, and Val43 were substituted with Ser, Leu, and Leu, respectively, bound to enriched preparations of rat placental IGF-II/CIM6-P receptors with apparent equilibrium dissociation constants (Kd(app)) that were only slightly greater, i.e. 0.10, 0.05, and 0.06 nM, than that of rIGF-II (0.04 nM) or hIGF-II (0.03 nM). In contrast, replacing Phe26 with Ser resulted in 5- and 20-fold decreases in the affinities of this mutant for highly purified human placental IGF-I and insulin receptors, respectively. The affinities of the two other Class I mutants, [Leu27]- and [Leu43]rIGF-IIs, for these two receptors were reduced 80- to 220-fold. The affinities of Class II mutants, i.e. [Thr48,Ser49,Ile50]- and [Arg54,Arg55] rIGF-IIs, for IGF-I receptors were as potent as rIGF-II; however, they bound very poorly or not at all to the IGF-II/CIM6-P receptor. In the binding study of those mutant rIGF-IIs, IGF-II was observed to have an unexpectedly high affinity for pure human placental insulin receptor preparations. For example, the affinities of hIGF-II, rIGF-II, and two Class II rIGF-II mutants for the insulin receptor were only 3-, 9-, and 5-fold less, respectively, than that of porcine insulin. In two biological assay systems, i.e. the stimulation of DNA synthesis in Balb/c 3T3 cells and glycogen synthesis in HepG2 cells, the Kd(app) of the rIGF-II mutants for the IGF-I receptor but not the IGF-II/CIM6-P receptor correlated with their abilities to produce biological responses.  相似文献   

14.
We have characterized the biological activity of two analogs of insulinlike growth factor I (IGF I) which have significantly reduced affinity for the soluble 28 K binding proteins which are secreted by various cell types. The analogs, which were made by site-directed mutagenesis of a synthetic gene encoding for IGF I, are [Gln 3, Ala 4, Tyr 15, Leu 16] IGF I and an analog in which the first 16 amino acids of IGF I were replaced with the first 17 amino acids of insulin (B-chain mutant). These two peptides have 100-fold and greater than 1,000-fold lower affinity, respectively, than IGF I for the 28 K binding protein present in the conditioned medium of two cell types, the clonal rat vascular smooth muscle line A10, and BALB/C 3T3 cells. The 28 K protein secreted by BALB/C 3T3 cells has fivefold-lower apparent affinity for both IGF I and [Gln 3, Ala 4, Tyr 15, Leu 16] IGF I than does the 28 K protein secreted by A 10 cells. Conditioned medium from these two cell types has similar amounts of unoccupied 28 K protein as evidenced by the ability of 125I-IGF I to specifically bind to and be covalently bound to the protein after treatment with the bifunctional cross-linking reagent disuccinimidyl suberate. In the presence of 0.1% calf serum, IGF I and [Gln 3, Ala 4, Tyr 15, Leu 16] IGF I stimulate DNA synthesis in A10 cells with ED50 = 0.4 nM, and in BALB/C 3T3 cells with ED50 = 10 nM and 1.3 nM, respectively. Thus, these peptides are equipotent in A10 cells, but the mutant peptide is ten times more active than IGF I in BALB/C 3T3 cells. A10 cells can be made ten times less sensitive to IGF I by performing the incubation in the presence of conditioned media from BALB/C 3T3 cells but not from A10 cells. The activity of [Gln 3, Ala 4, Tyr 15, Leu 16] IGF I is not altered under these conditions. Thus, the conditioned media, which contain 28 K proteins secreted by A10 cells and BALB/C 3T3 cells, have different effects on the biological action of IGF I. These data suggest that the 28 K binding proteins can have important effects on the sensitivity of tissues to IGF I and that the B-chain mutant and [Gln 3, Ala 4, Tyr 15, Leu 16] IGF I will be useful in assessing the biological role of these proteins.  相似文献   

15.
Magee BA  Shooter GK  Wallace JC  Francis GL 《Biochemistry》1999,38(48):15863-15870
The biological activity of the insulin-like growth factors (IGF-I and IGF-II) is regulated by six IGF binding proteins (IGFBPs 1-6). To examine the surface of IGF-I that associates with the IGFBPs, we created a series of six IGF-I analogues, [His(4)]-, [Gln(9)]-, [Lys(9)]-, [Ser(16)]-, [Gln(9),Ser(16)]-, and [Lys(9),Ser(16)]IGF-I, that contained substitutions for residues Thr(4), Glu(9), or Phe(16). Substitution of Ser for Phe(16) did not affect secondary structure but significantly decreased the affinity for all IGFBPs by between 14-fold and >330-fold, indicating that Phe(16) is functionally important for IGFBP association. While His(4) or Gln(9) substitutions had little effect on IGFBP affinity, changing the negative charge of Glu(9) to a positive Lys(9) selectively decreased the affinities of IGFBP-2 and -6 by 140- and 30-fold, respectively. Furthermore, the effects of mutations to both residues 9 and 16 appear to be additive. The analogues are biologically active in rat L6 myoblasts and they retain native structure as assessed by their far-UV circular dichroism (CD) profiles. We propose that Phe(16) and adjacent hydrophobic residues (Leu(5) and Leu(54)) form a functional binding pocket for IGFBP association.  相似文献   

16.
The origins of differentiation of insulin from insulin-like growth factor I (IGF-I) are still unknown. To address the problem of a structural and biological switch from the mostly metabolic hormonal activity of insulin to the predominant growth factor activities of IGF-I, an insulin analogue with IGF-I-like structural features has been synthesized. Insulin residues Phe(B25) and Tyr(B26) have been swapped with the IGF-I-like Tyr(24) and Phe(25) sequence with a simultaneous methylation of the peptide nitrogen of residue Phe(B26). These modifications were expected to introduce a substantial kink in the main chain, as observed at residue Phe(25) in the IGF-I crystal structure. These alterations should provide insight into the structural origins of insulin-IGF-I structural and functional divergence. The [Tyr(B25)NMePhe(B26)] mutant has been characterized, and its crystal structure has been determined. Surprisingly, all of these changes are well accommodated within an insulin R6 hexamer. Only one molecule of each dimer in the hexamer responds to the structural alterations, the other remaining very similar to wild-type insulin. All alterations, modest in their scale, cumulate in the C-terminal part of the B-chain (residues B23-B30), which moves toward the core of the insulin molecule and is associated with a significant shift of the A1 helix toward the C-terminus of the B-chain. These changes do not produce the expected bend of the main chain, but the fold of the mutant does reflect some structural characteristics of IGF-1, and in addition establishes the CO(A19)-NH(B25) hydrogen bond, which is normally characteristic of T-state insulin.  相似文献   

17.
Mutational analyses of the secreted recombinant insulin receptor extracellular domain have identified a ligand binding site composed of residues located in the L1 domain (amino acids 1-470) and at the C terminus of the alpha subunit (amino acids 705-715). To evaluate the physiological significance of this ligand binding site, we have transiently expressed cDNAs encoding full-length receptors with alanine mutations of the residues forming the functional epitopes of this binding site and determined their insulin binding properties. Insulin bound to wild-type receptors with complex kinetics, which were fitted to a two-component sequential model; the Kd of the high affinity component was 0.03 nM and that of the low affinity component was 0.4 nM. Mutations of Arg14, Phe64, Phe705, Glu706, Tyr708, Asn711, and Val715 inactivated the receptor. Alanine mutation of Asn15 resulted in a 20-fold decrease in affinity, whereas mutations of Asp12, Gln34, Leu36, Leu37, Leu87, Phe89, Tyr91, Lys121, Leu709, and Phe714 all resulted in 4-10-fold decreases. When the effects of the mutations were compared with those of the same mutations of the secreted recombinant receptor, significant differences were observed for Asn15, Leu37, Asp707, Leu709, Tyr708, Asn711, Phe714, and Val715, suggesting that the molecular basis for the interaction of each form of the receptor with insulin differs. We also examined the effects of alanine mutations of Asn15, Gln34, and Phe89 on insulin-induced receptor autophosphorylation. They had no effect on the maximal response to insulin but produced an increase in the EC50 commensurate with their effect on the affinity of the receptor for insulin.  相似文献   

18.
Melanin-concentrating hormone (MCH) is a neuropeptide occurring in all vertebrates and some invertebrates and is now known to stimulate pigment aggregation in teleost melanophores and food-intake in mammals. Whereas the two MCH receptor subtypes hitherto cloned, MCH-R1 and MCH-R2, are thought to mediate mainly the central effects of MCH, the MCH-R on pigment cells has not yet been identified, although in some studies MCH-R1 was reported to be expressed by human melanocytes and melanoma cells. Here we present data of a structure-activity study in which 12 MCH peptides were tested on rat MCH-R1 and mouse B16 melanoma cell MCH-R, by comparing receptor binding affinities and biological activities. For receptor binding analysis with HEK-293 cells expressing rat MCH-R1 (SLC-1), the radioligand was [125I]-[Tyr13]-MCH with the natural sequence. For B16 cells (F1 and G4F sublines) expressing B16 MCH-R, the analog [125I]-[D-Phe13, Tyr19]-MCH served as radioligand. The bioassay used for MCH-R1 was intracellular Ca2+ mobilization quantified with the FLIPR instrument, whereas for B16 MCH-R the signal determined was MAP kinase activation. Our data show that some of the peptides displayed a similar relative increase or decrease of potency in both cell types tested. For example, linear MCH with Ser residues at positions 7 and 16 was almost inactive whereas a slight increase in side-chain hydrophilicity at residues 4 and 8, or truncation of MCH at the N-terminus by two residues hardly changed binding affinity or bioactivity. On the other hand, salmonic MCH which also lacks the first two residues of the mammalian sequence but in addition has different residues at positions 4, 5, 9, and 18 exhibited a 5- to 10-fold lower binding activity than MCH in both cell systems. A striking difference in ligand recognition between MCH-R1 and B16 MCH-R was however observed with modifications at position 13 of MCH: whereas L-Phe13 in [Phe13, Tyr19]-MCH was well tolerated by both MCH-R1 and B16 MCH-R, change of configuration to D-Phe13 in [D-Phe13, Tyr19]-MCH or [D-Phe13]-MCH led to a complete loss of biological activity and to a 5- to 10-fold lower binding activity with MCH-R1. By contrast, the D-Phe13 residue increased the affinity of [D-Phe13, Tyr19]-MCH to B16 MCH-R about 10-fold and elicited MAP kinase activation as observed with [Phe13, Tyr19]-MCH or MCH. These data demonstrate that ligand recognition by B16 MCH-R differs from that of MCH-R1 in several respects, indicating that the B16 MCH-R represents an MCH-R subtype different from MCH-R1.  相似文献   

19.
Five structural analogs of human insulin-like growth factor II (IGF II), [Leu27]IGF II, [Glu27]IGF II, des(62-67)IGF II, des(62-67)[Leu27]IGF II and des(62-67)[Glu27]IGF II were constructed by site-directed mutagenesis and expressed as protein A fusion proteins in E. coli BL21 pLysS cells, cleaved with CNBr and purified by affinity chromatography and HPLC. These mutants were tested for their binding affinities to type 1 and type 2 IGF receptors, to IGF binding protein-3 (IGFBP-3) and for their stimulation of thymidine incorporation into DNA. [Leu27]IGF II exhibits an affinity to the type 2 IGF receptor close to that of wild-type IGF II, but has lost completely the affinity to the type 1 IGF receptor. The results further suggest that the D domain, which is close to Tyr27, forms part of the binding region for the type 1 IGF receptor.  相似文献   

20.
We have identified high and low affinity insulin-like growth factor I (IGF I)-binding sites with mean dissociation constants of 0.37 and 6.25 nM, respectively, in solubilized placental membranes. We have separated these sites and purified the high affinity IGF I receptor 1,300-fold, with an overall yield of 9.9%, using wheat germ agglutinin-Sepharose chromatography, insulin affinity chromatography, and IGF I affinity chromatography. The Scatchard plot of IGF I binding to the high affinity receptor is linear, suggesting the purification of a single homogeneous class of binding sites. Insulin is two orders of magnitude less effective than IGF I in competitively inhibiting IGF I binding to this receptor. The high affinity IGF I receptor is composed of alpha and beta subunits with apparent molecular weights of 135,500 and 96,200, respectively. IGF I at concentrations of greater than or equal to 50 ng/ml stimulates autophosphorylation of the beta subunit of the purified high affinity receptor 4.6-fold. Low affinity IGF I-binding sites run through the IGF I affinity column or are eluted from the insulin affinity column. The separation of IGF I receptors with different binding affinities by sequential affinity chromatography will make it possible to examine directly the determinants of receptor affinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号