首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 848 毫秒
1.
Natronobacterium pharaonis has retinal proteins, one of which is pharaonis phoborhodopsin, abbreviated as ppR (or called pharaonis sensory rhodopsin II, psR-II). This pigment protein functions as a photoreceptor of the negative phototaxis of this bacterium. On photoexcitation ppR undergoes photocycling; the photoexcited state relaxes in the dark and returns to the original state via several intermediates. The photocycle of ppR resembles that of bR except in wavelengths and rate. The cycle of bR is completed in 10 ms while that of ppR takes seconds. The Arrhenius analysis of M-intermediate (ppR(M)) decay which is rate-limiting revealed that the slow decay is due to the large negative activation entropy of ppR. The addition of azide increases the decay rate 300-fold (at pH 7); Arrhenius analysis revealed decreases in the activation energy (activation enthalpy) and a further decrease in the activation entropy.  相似文献   

2.
Halorhodopsin from Natronomonas pharaonis is a light-driven chloride pump which transports a chloride anion across the plasma membrane following light absorption by a retinal chromophore which initiates a photocycle. It was shown that the chloride anion bound in the vicinity of retinal PSB can be replaced by several inorganic anions, including azide which converts the chloride pump into a proton pump and induces formation of an M-like intermediate detected in the bR photocycle but not in native halorhodopsin. Here we have studied the possibility of replacing the chloride anion with organic anions and have followed the photocycle under several conditions. It is revealed that the chloride can be replaced with a formate anion but not with larger organic anions such as acetate. Flash photolysis experiments detected in the formate pigment an M-like intermediate characterized by a lifetime much longer than that of the O intermediate. The lifetime of the M-like intermediate depends on the pH, and its decay is significantly accelerated at low pH. The decay rate exhibited a titration-like curve, suggesting that the protonation of a protein residue controls the rate of M decay. Similar behavior was detected in N. pharaonis pigments in which the chloride anion was replaced with NO(2)(-) and OCN(-) anions. It is suggested that the formation of the M-like intermediate indicates branching pathways from the L intermediate or basic heterogeneity in the original pigment.  相似文献   

3.
Phoborhodopsin (pR; also sensory rhodopsin II, sRII) is a retinoid protein in Halobacterium salinarum and works as a receptor of negative phototaxis. Pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a corresponding protein of Natronobacterium pharaonis. In bacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. We expressed pHtrII-free ppR or ppR-pHtrII complex in H. salinarum Pho81/wr(-) cells. Flash-photolysis experiments showed no essential changes between pHtrII-free ppR and the complex. Using SnO2 electrode, which works as a sensitive pH electrode, and envelope membrane vesicles, we showed the photo-induced outward proton transport. This membranous proton transport was also shown using membrane vesicles from Escherichia coli in which ppR was functionally expressed. On the other hand, the proton transport was ceased when ppR formed a complex with pHtrII. Using membrane sheet, it was shown that the complex undergoes first proton uptake and then release during the photocycle, the same as pHtrII-free ppR, although the net proton transport ceases. Taking into consideration that the complex of sRII (pR) and its transducer undergoes extracellular proton circulation (J. Sasaki and J. L., Biophys. J. 77:2145-2152), we inferred that association with pHtrII closes a cytoplasmic channel of ppR, which lead to the extracellular proton circulation.  相似文献   

4.
Phoborhodopsin (also called sensory rhodopsin II, sR-II) is a receptor for the negative phototaxis of Halobacterium salinarum (pR), and pharaonis phoborhodopsin (ppR) is the corresponding receptor of Natronobacterium pharaonis. pR and ppR are retinoid proteins and have a photocycle similar to that of bacteriorhodopsin (bR). A major difference between the photocycle of the ion pump bR and the sensor pR or ppR is found in their turnover rates which are much faster for bR. A reason for this difference might be found in the lack of a proton-donating residue to the Schiff base which is formed between the lysine of the opsin and retinal. To reconstruct a bR-like photochemical behavior, we expressed ppR mutants in Escherichia coli in which proton-donating groups have been reintroduced into the cytoplasmic proton channel. In measurement of the photocycle it could be shown that the F86D mutant of ppR (Phe86 was substituted by Asp) showed a faster decay of M-intermediate than the wild-type, which was even accelerated in the F86D/L40T double mutant.  相似文献   

5.
The retinal protein phoborhodopsin (pR) (also called sensory rhodopsin II) is a specialized photoreceptor pigment used for negative phototaxis in halobacteria. Upon absorption of light, the pigment is transformed into a short-wavelength intermediate, M, that most likely is the signaling state (or its precursor) that triggers the motility response of the cell. The M intermediate thermally decays into the initial pigment, completing the cycle of transformations. In this study we attempted to determine whether M can be converted into the initial state by light. The M intermediate was trapped by the illumination of a water glycerol suspension of phoborhodopsin from Natronobacterium pharaonis called pharaonis phoborhodopsin (ppR) with yellow light (>450 nm) at -50 degrees C. The M intermediate absorbing at 390 nm is stable in the dark at this temperature. We found, however, that M is converted into the initial (or spectrally similar) state with an absorption maximum at 501 nm upon illumination with 380-nm light at -60 degrees C. The reversible transformations ppR if M are accompanied by the perturbation of tryptophan(s) and probably tyrosine(s) residues, as reflected by changes in the UV absorption band. Illumination at lower temperature (-160 degrees C) reveals two intermediates in the photoconversion of M, which we termed M' (or M'(404)) and ppR' (or ppR'(496)). A third photoproduct, ppR'(504), is formed at -110 degrees C during thermal transformations of M'(404) and ppR'(496). The absorption spectrum of M'(404) (maximum at 404 nm) consists of distinct vibronic bands at 362, 382, 404, and 420 nm that are different from the vibronic bands of M at 348, 368, 390, and 415 nm. ppR'(496) has an absorption band that is shifted to shorter wavelengths by 5 nm compared to the initial ppR, whereas ppR'(504) is redshifted by at least 3 nm. As in bacteriorhodopsin, photoexcitation of the M intermediate of ppR and, presumably, photoisomerization of the chromophore during the M --> M' transition result in a dramatic increase in the proton affinity of the Schiff base, followed by its reprotonation during the M' --> ppR' transition. Because the latter reaction occurs at very low temperature, the proton is most likely taken from the counterion (Asp(75)) rather than from the bulk. The phototransformation of M reveals a certain heterogeneity of the pigment, which probably reflects different populations of M or its photoproduct M'. Photoconversion of the M intermediate provides a possible pathway for photoreception in halobacteria and a useful tool for studying the mechanisms of signal transduction by phoborhodopsin (sensory rhodopsin II).  相似文献   

6.
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the Schiff base of the retinal chromophore is deprotonated upon formation of the M intermediate (ppR(M)). The present FTIR spectroscopy of ppR(M) revealed that the Schiff base proton is transferred to Asp-75, which corresponds to Asp-85 in a light-driven proton-pump bacteriorhodopsin (BR). In addition, the C==O stretching vibrations of Asn-105 were assigned for ppR and ppR(M). The common hydrogen-bonding alterations in Asn-105 of ppR and Asp-115 of BR were found in the process from photoisomerization (K intermediate) to the primary proton transfer (M intermediate). These results implicate similar protein structural changes between ppR and BR. However, BR(M) decays to BR(N) accompanying a proton transfer from Asp-96 to the Schiff base and largely changed protein structure. In the D96N mutant protein of BR that lacks a proton donor to the Schiff base, the N-like protein structure was observed with the deprotonated Schiff base (called M(N)) at alkaline pH. In ppR, such an N-like (M(N)-like) structure was not observed at alkaline pH, suggesting that the protein structure of the M state activates its transducer protein.  相似文献   

7.
Furutani Y  Sudo Y  Kamo N  Kandori H 《Biochemistry》2003,42(17):4837-4842
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psRII) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. ppR activates the cognate transducer protein, pHtrII, upon absorption of light. ppR and pHtrII form a tight 2:2 complex in the unphotolyzed state, and the interaction is somehow altered during the photocycle of ppR. In this paper, we studied the influence of pHtrII on the structural changes occurring upon retinal photoisomerization in ppR by means of low-temperature FTIR spectroscopy. We trapped the K intermediate at 77 K and compared the ppR(K) minus ppR spectra in the absence and presence of pHtrII. There are no differences in the X-D stretching vibrations (2700-1900 cm(-1)) caused by presence of pHtrII. This result indicates that the hydrogen-bonding network in the Schiff base region is not altered by interaction with pHtrII, which is consistent with the same absorption spectrum of ppR with or without pHtrII. In contrast, the ppR(K) minus ppR infrared difference spectra are clearly influenced by the presence of pHtrII in amide-I (1680-1640 cm(-1)) and amide-A (3350-3250 cm(-1)) vibrations. The identical spectra for the complex of the unlabeled ppR and (13)C- or (15)N-labeled pHtrII indicate that the observed structural changes for the peptide backbone originate from ppR only and are altered by retinal photoisomerization. The changes do not come from pHtrII, implying that the light signal is not transmitted to pHtrII in ppR(K). In addition, we observed D(2)O-insensitive bands at 3479 (-)/3369 (+) cm(-1) only in the presence of pHtrII, which presumably originate from an X-H stretch of an amino acid side chain inside the protein.  相似文献   

8.
Phoborhodopsin (pR or sensory rhodopsin II, sRII) and pharaonis phoborhodopsin (ppR or pharaonis sRII, psRII) have a unique absorption maximum (lambda(max)) compared with three other archaeal rhodopsins: lambda(max) of pR and ppR is approx. 500 nm and of others (e.g. bacteriorhodopsin, bR) is 560-590 nm. To determine the residue contributing to the opsin shift from ppR to bR, we constructed various ppR mutants, in which a single residue was substituted for a residue corresponding to that of bR. The residues mutated were those which differ from that of bR and locate within 5 A from the conjugated polyene chain of the chromophore or any methyl group of the polyene chain. The shifts of lambda(max) of all mutants were small, however. We constructed a mutant in which all residues which differ from those of bR in the retinal binding site were simultaneously substituted for those of bR, but the shift was only from 499 to 509 nm. Next, we constructed a mutant in which 10 residues located within 5 A from the polyene as described above were simultaneously substituted. Only 44% of the opsin shift (lambda(max) of 524 nm) from ppR to bR was obtained even when all amino acids around the chromophore were replaced by the same residues as bR. We therefore conclude that the structural factor is more important in accounting for the difference of lambda(max) between ppR and bR rather than amino acid substitutions. The possible structural factors are discussed.  相似文献   

9.
Furutani Y  Iwamoto M  Shimono K  Wada A  Ito M  Kamo N  Kandori H 《Biochemistry》2004,43(18):5204-5212
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor protein for negative phototaxis in Natronobacterium pharaonis. During the photocycle of ppR, the retinal chromophore is thermally isomerized from the 13-cis to all-trans form. We employed FTIR spectroscopy of ppR at 260 K and pH 5 to reveal that this isomerization occurs upon formation of the O intermediate (ppR(O)) by using ppR samples reconstituted with 12,14-D(2)-labeled retinal. In ppR(O), C=O stretching vibrations of protonated carboxylates newly appear at 1757 (+)/1722 (-) cm(-1) in H(2)O and at 1747 (+)/1718 (-) cm(-1) in D(2)O in addition to the 1765 (+) cm(-1) band of Asp75. Amide I vibrations are basically similar between ppR(M) and ppR(O), whereas unique bands of ppR(O) are also observed such as the negative 1656 cm(-1) band in D(2)O and intense bands at 1686 (-)/1674 (+) cm(-1). In addition, O-D stretching vibrations of water molecules in the entire mid-infrared region are assigned for ppR(M) and ppR(O), the latter being unique for ppR, since it can be detected at low temperature (260 K). The ppR(M) minus ppR difference spectra lack the lowest frequency water band (2215 cm(-1)) observed in the ppR(K) minus ppR spectra, which is probably associated with water that interacts with the negative charges in the Schiff base region. It is likely that the proton transfer from the Schiff base to Asp75 in ppR(M) can be explained by a hydration switch of a water from Asp75 to Asp201, as was proposed for the light-driven proton-pump bacteriorhodopsin (hydration switch model) [Tanimoto, T., Furutani, Y., and Kandori, H. (2003) Biochemistry 42, 2300-2306]. In the transition from ppR(M) to ppR(O), a hydrogen-bonding alteration takes place for another water molecule that forms a strong hydrogen bond.  相似文献   

10.
pharaonis phoborhodopsin (ppR; also pharaonis sensory rhodopsin II, psRII) is a receptor of the negative phototaxis of Natronobacterium pharaonis. In halobacterial membrane, ppR forms a complex with its transducer pHtrII, and this complex transmits the light signal to the sensory system in the cytoplasm. In the present work, the truncated transducer, t-Htr, was used which interacts with ppR [Sudo et al. (2001) Photochem. Photobiol. 74, 489-494]. Two water-soluble reagents, hydroxylamine and azide, reacted both with the transducer-free ppR and with the complex ppR/t-Htr (the complex between ppR and its truncated transducer). In the dark, the bleaching rates caused by hydroxylamine were not significantly changed between transducer-free ppR and ppR/t-Htr, or that of the free ppR was a little slower. Illumination accelerated the bleach rates, which is consistent with our previous conclusion that the reaction occurs selectively at the M-intermediate, but the rate of the complex was about 7.4-fold slower than that of the transducer-free ppR. Azide accelerated the M-decay, and its reaction rate of ppR/t-Htr was about 4.6-fold slower than free ppR. These findings suggest that the transducer binding decreases the water accessibility around the chromophore at the M-intermediate. Its implication is discussed.  相似文献   

11.
Iwamoto M  Furutani Y  Kamo N  Kandori H 《Biochemistry》2003,42(10):2790-2796
pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII), a negative phototaxis receptor of Natronobacterium pharaonis, can use light to pump a proton in the absence of its transducer protein. However, the pump activity is much lower than that of the light-driven proton-pump bacteriorhodopsin (BR). ppR's pump activity is known to be increased in a mutant protein, in which Phe86 is replaced with Asp (F86D). Phe86 is the amino acid residue corresponding to Asp96 in BR, and we expect that Asp86 plays an important role in the proton transfer at the highly hydrophobic cytoplasmic domain of the F86D mutant ppR. In this article, we studied protein structural changes and proton transfer reactions during the photocycles of the F86D and F86E mutants in ppR by means of Fourier transform infrared (FTIR) spectroscopy and photoelectrochemical measurements using a tin oxide (SnO2) electrode. FTIR spectra of the unphotolyzed state and the K and M intermediates are very similar among F86D, F86E, and the wild type. Asp86 or Glu86 is protonated in F86D or F86E, respectively, and the pK(a) > 9. During the photocycle, the pK(a) is lowered and deprotonation of Asp86 or Glu86 is observed. Detection of both deprotonation of Asp86 or Glu86 and concomitant reprotonation of the 13-cis chromophore implies the presence of a proton channel between position 86 and the Schiff base. However, the photoelectrochemical measurements revealed proton release presumably from Asp86 or Glu86 to the cytoplasmic aqueous phase in the M state. This indicates that the ppR mutants do not have the BR-like mechanism that conducts a proton uniquely from Asp86 or Glu86 (Asp96 in BR) to the Schiff base, which is possible in BR by stepwise protein structural changes at the cytoplasmic side. In ppR, there is a single open structure at the cytoplasmic side (the M-like structure), which is shown by the lack of the N-like protein structure even in F86D and F86E at alkaline pH. Therefore, it is likely that a proton can be conducted in either direction, the Schiff base or the bulk, in the open M-like structure of F86D and F86E.  相似文献   

12.
Iwamoto M  Hasegawa C  Sudo Y  Shimono K  Araiso T  Kamo N 《Biochemistry》2004,43(11):3195-3203
pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II, psRII) is a photo-receptor for negative phototaxis in Natronobacterium pharaonis. During the photoreaction cycle (photocycle), ppR exhibits intraprotein proton movements, resulting in proton pumping from the cytoplasmic to the extracellular side, although it is weak. In this study, light-induced proton uptake and release of ppR reconstituted with phospholipid were analyzed using a SnO(2) electrode. The reconstituted ppR exhibited properties in proton uptake and release that are different from those of dodecyl maltoside solubilized samples. It showed fast proton release before the decay of ppR(M) (M-photointermediate) followed by proton uptake, which was similar to that of bacteriorhodopsin (BR), a light-driven proton pump. Mutant analysis assigned Asp193 to one (major) of the members of the proton-releasing group (PRG). Fast proton release was observed only when the pH was approximately 5-8 in the presence of Cl(-). When Cl(-) was replaced with SO(4)(2-), the reconstituted ppR did not exhibit fast proton release at any pH, suggesting Cl(-) binding around PRG. PRG in BR consists of Glu204 (Asp193 in ppR) and Glu194 (Pro183 in ppR). Replacement of Pro183 by Glu/Asp, a negatively charged residue, led to Cl(-)-independent fast proton release. The transducer binding affected the properties of PRG in ppR in the ground state and in the ppR(M) state, suggesting that interaction with the transducer extends to the extracellular surface of ppR. Differences and similarities in the molecular mechanism of the proton movement between ppR and BR are discussed.  相似文献   

13.
The photochemical and subsequent thermal reactions of phoborhodopsin (pR490), which mediates the negative phototaxis (phobic reaction) of Halobacterium halobium, were investigated by low-temperature spectrophotometry. At room temperature, the absorption spectrum of pR490 displayed vibrational structure with a maximum at 490 nm and a shoulder at 460 nm, which were remarkably sharpened by cooling, resulting in the appearance of two well-separated peaks. On irradiation of pR490 at -170 degrees C, a photo-steady-state mixture composed of pR490 and two photoproducts, P520 and P480, was formed. P480 had an absorption maximum at 480 nm and thermally converted to pR490 above -160 degrees C, while P520 had an absorption maximum at 515 nm and thermally converted to P350, the next intermediate, above -60 degrees C. Above -30 degrees C, P350 was converted to P530, and then reverted to pR490. P520, P350, and P530 may correspond to K, M, and O intermediates of bacteriorhodopsin, respectively, on the basis of their absorption spectra, but the intermediates corresponding to L and N intermediates were not observed. On the basis of these results, a new scheme of the photoreaction cycle of pR490 was presented.  相似文献   

14.
Tateishi Y  Abe T  Tamogami J  Nakao Y  Kikukawa T  Kamo N  Unno M 《Biochemistry》2011,50(12):2135-2143
Sensory rhodopsin II is a seven transmembrane helical retinal protein and functions as a photoreceptor protein in negative phototaxis of halophilic archaea. Sensory rhodopsin II from Natronomonas pharaonis (NpSRII) is stable under various conditions and can be expressed functionally in Escherichia coli cell membranes. Rhodopsins from microorganisms, known as microbial rhodopsins, exhibit a photocycle, and light irradiation of these molecules leads to a high-energy intermediate, which relaxes thermally to the original pigment after passing through several intermediates. For bacteriorhodopsin (BR), a light-driven proton pump, the photocycle is established as BR → K → L → M → N → O → BR. The photocycle of NpSRII is similar to that of BR except for N, i.e., M thermally decays into the O, and N has not been well characterized in the photocycle. Thus we here examined the second half of the photocycle in NpSRII, and in the present transient absorption study we found the formation of a new photointermediate whose absorption maximum is ~500 nm. This intermediate becomes pronounced in the presence of azide, which accelerates the decay of M. Transient resonance Raman spectroscopy was further applied to demonstrate that this intermediate contains a 13-cis retinal protonated Schiff base. However, detailed analysis of the transient absorption data indicated that M-decay does not directly produce N but rather produces O that is in equilibrium with N. These observations allowed us to propose a structural model for a photocycle that involves N.  相似文献   

15.
Sudo Y  Iwamoto M  Shimono K  Kamo N 《Biochemistry》2004,43(43):13748-13754
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, NpSRII) is a receptor for negative phototaxis in Natronomonas (Natronobacterium) pharaonis. In membranes, it forms a 2:2 complex with its transducer protein, pHtrII, which transmits light signals into the cytoplasmic space through protein-protein interactions. We previously found that a specific deprotonated carboxyl of ppR or pHtrII strengthens their binding [Sudo, Y., et al. (2002) Biophys. J. 83, 427-432]. In this study we aim to identify this carboxyl group. Since the D75N mutant has only one photointermediate (ppR(O)(-)(like)) whose existence spans the millisecond time range, the analysis of its decay rate is simple. We prepared various D75N mutants such as D75N/D214N, D75N/K157Q/R162Q/R164Q (D75N/3Gln), D75N/D193N, and D75N/D193E, among which only D75N/D193N did not show pH dependence with regard to the ppR(O)(-)(like) decay rate and K(D) value for binding, implying that the carboxyl group in question is from Asp-193. The pK(a) of this group decreased to below 2 when a complex was formed. Therefore, we conclude that Asp-193(p)()(pR) is connected to the distant transducer-ppR binding surface via hydrogen bonds, thereby modulating its pK(a). In addition, we discuss the importance of Arg-162(p)()(pR) with respect to the binding activity.  相似文献   

16.
A method for synthesis of retinal analogs labeled with electron-density groups is suggested. The interaction of these polyene compounds with bacterioopsin in apomembrane of Halobacterium salinarum was tested. A retinal analog containing a crown-ether receptor group is able to interact readily with bacterioopsin giving rise to rapid formation of a pigment with absorption maximum at 460 nm. This pigment is capable of undergoing cyclic photoconversion. The crown-bacteriorhodopsin photocycle is extremely slow and its quantum efficiency is very low (3% of that in native bacteriorhodopsin). This photocycle includes an M-like intermediate with a differential absorption maximum at 380 nm. A retinal analog in which the -ionone ring is replaced by ferrocene moiety forms a stable chromoprotein with the main absorption band at 483 nm and a shoulder near 590-610 nm.  相似文献   

17.
Pharaonis phoborhodopsin (ppR), also called pharaonis sensory rhodopsin II, NpSRII, is a photoreceptor of negative phototaxis in Natronomonas (Natronobacterium) pharaonis. The photocycle rate of ppR is slow compared to that of bacteriorhodopsin, despite the similarity in their x-ray structures. The decreased rate of the photocycle of ppR is a result of the longer lifetime of later photo-intermediates such as M- (ppR(M)) and O-intermediates (ppR(O)). In this study, mutants were prepared in which mutated residues were located on the extracellular surface (P182, P183, and V194) and near the Schiff base (T204) including single, triple (P182S/P183E/V194T), and quadruple mutants. The decay of ppR(O) of the triple mutant was accelerated approximately 20-times from 690 ms for the wild-type to 36 ms. Additional mutation resulting in a triple mutant at the 204th position such as T204C or T204S further decreased the decay half-time to 6.6 or 8 ms, almost equal to that of bacteriorhodopsin. The decay half-times of the ppR(O) of mutants (11 species) and those of the wild-type were well-correlated with the pK(a) value of Asp-75 in the dark for the respective mutants as spectroscopically estimated, although there are some exceptions. The implications of these observations are discussed in detail.  相似文献   

18.
Pharaonis phoborhodopsin (ppR, also called pharaonis sensory rhodopsin II) is a seven transmembrane helical retinal protein. ppR forms a signaling complex with pharaonis Halobacterial transducer II (pHtrII) in the membrane that transmits a light signal to the sensory system in the cytoplasm. The M-state during the photocycle of ppR (λmax = 386 nm) is one of the active (signaling) intermediates. However, progress in characterizing the M-state at physiological temperature has been slow because its lifetime is very short (decay half-time is ∼1 s). In this study, we identify a highly stable photoproduct that can be trapped at room temperature in buffer solution containing n-octyl-β-d-glucoside, with a decay half-time and an absorption maximum of ∼2 h and 386 nm, respectively. HPLC analysis revealed that this stable photoproduct contains 13-cis-retinal as a chromophore. Previously, we reported that water-soluble hydroxylamine reacts selectively with the M-state, and we found that this stable photoproduct also reacts selectively with that reagent. These results suggest that the physical properties of the stable photoproduct (named the M-like state) are very similar with the M-state during the photocycle. By utilizing the high stability of the M-like state, we analyzed interactions of the M-like state and directly estimated the pKa value of the Schiff base in the M-like state. These results suggest that the dissociation constant of the ppRM-like/pHtrII complex greatly increases (to 5 μM) as the pKa value greatly decreases (from 12 to 1.5). The proton transfer reaction of ppR from the cytoplasmic to the extracellular side is proposed to be caused by this change in pKa.  相似文献   

19.
Shimono K  Furutani Y  Kamo N  Kandori H 《Biochemistry》2003,42(25):7801-7806
pharaonis phoborhodopsin (ppR; also called pharaonis sensory rhodopsin II, psR-II) is a photoreceptor for negative phototaxis in Natronobacterium pharaonis. Recent X-ray crystallographic structures showed that ppR and bacteriorhodopsin (BR), a light-driven proton pump, possess similar molecular environments of the retinal Schiff base. Nevertheless, absorption spectra are different by 70 nm between ppR and BR, suggesting the different chromophore-protein interactions involving the Schiff base region. In this article, we identify frequencies of the Schiff base vibrations in the ppR(K) minus ppR difference spectra by means of low-temperature FTIR spectroscopy of [zeta-(15)N]lysine-labeled ppR. The N-D stretch in D(2)O was found at 2140 and 2091 cm(-1) for ppR, which are shifted to a lower frequency by 32-33 cm(-1) compared to those for BR. This observation indicates the stronger hydrogen bond of the Schiff base in ppR than in BR. The N-D stretch of the Schiff base and O-D stretch of water molecules are located at the different frequencies in ppR, while they appear in the same frequency region in BR [Kandori, H., Belenky, M., and Herzfeld, J. (2002) Biochemistry 41, 6026-6031]. These differences could be correlated with the distorted pentagonal cluster structure in ppR. In contrast, the N-D stretch of ppR(K) was found at 2474 cm(-1), which is close in frequency to that of BR(K). The O-D stretch of Thr79 was also assigned at 2512 and 2474 cm(-1) for ppR and ppR(K), respectively. These frequencies are close to those of BR, suggesting the interaction of Thr79 and Asp75 in ppR is similar to that of Thr89 and Asp85 in BR.  相似文献   

20.
Natronobacterium pharaonis phoborhodopsin (ppR; also called N. pharaonis sensory rhodopsin II, NpsRII) is a photophobic sensor in N. pharaonis, and has a shorter absorption maximum (lambdamax, 500 nm) than those of other archaeal retinal proteins (lambdamax, 560-590 nm) such as bacteriorhodopsin (bR). We constructed chimeric proteins between bR and ppR to investigate the long range interactions effecting the color regulation among archaeal retinal proteins. The lambdamax of B-DEFG/P-ABC was 545 nm, similar to that of bR expressed in Escherichia coli (lambdamax, 550 nm). B-DEFG/P-ABC means a chimera composed of helices D, E, F, and G of bR and helices A, B, and C of ppR. This indicates that the major factor(s) determining the difference in lambdamax between bR and ppR exist in helices DEFG. To specify the more minute regions for the color determination between bR and ppR, we constructed 15 chimeric proteins containing helices D, E, F, and G of bR. According to the absorption spectra of the various chimeric proteins, the interaction between helices D and E as well as the effect of the hydroxyl group around protonated Schiff base on helix G (Thr-204 for ppR and Ala-215 for bR) are the main factors for spectral tuning between bR and ppR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号