首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
We report engineering Neurospora crassa to improve the yield of cellobiose and cellobionate from cellulose. A previously engineered strain of N. crassa (F5) with six of seven β-glucosidase (bgl) genes knocked out was shown to produce cellobiose and cellobionate directly from cellulose without the addition of exogenous cellulases. In this study, the F5 strain was further modified to improve the yield of cellobiose and cellobionate from cellulose by increasing cellulase production and decreasing product consumption. The effects of two catabolite repression genes, cre-1 and ace-1, on cellulase production were investigated. The F5 Δace-1 mutant showed no improvement over the wild type. The F5 Δcre-1 and F5 Δace-1 Δcre-1 strains showed improved cellobiose dehydrogenase and exoglucanase expression. However, this improvement in cellulase expression did not lead to an improvement in cellobiose or cellobionate production. The cellobionate phosphorylase gene (ndvB) was deleted from the genome of F5 Δace-1 Δcre-1 to prevent the consumption of cellobiose and cellobionate. Despite a slightly reduced hydrolysis rate, the F5 Δace-1 Δcre-1 ΔndvB strain converted 75% of the cellulose consumed to the desired products, cellobiose and cellobionate, compared to 18% converted by the strain F5 Δace-1 Δcre-1.  相似文献   

4.
In the case of nitrogenase-based photobiological hydrogen production systems of cyanobacteria, the inactivation of uptake hydrogenase (Hup) leads to significant increases in hydrogen production activity. However, the high-level-activity stage of the Hup mutants lasts only a few tens of hours under air, a circumstance which seems to be caused by sufficient amounts of combined nitrogen supplied by active nitrogenase. The catalytic FeMo cofactor of nitrogenase binds homocitrate, which is required for efficient nitrogen fixation. It was reported previously that the nitrogenase from the homocitrate synthase gene (nifV) disruption mutant of Klebsiella pneumoniae shows decreased nitrogen fixation activity and increased hydrogen production activity under N2. The cyanobacterium Nostoc sp. strain PCC 7120 has two homocitrate synthase genes, nifV1 and nifV2, and with the ΔhupL variant of Nostoc sp. strain PCC 7120 as the parental strain, we have constructed two single mutants, the ΔhupL ΔnifV1 strain (with the hupL and nifV1 genes disrupted) and the ΔhupL ΔnifV2 strain, and a double mutant, the ΔhupL ΔnifV1 ΔnifV2 strain. Diazotrophic growth rates of the two nifV single mutants and the double mutant were decreased moderately and severely, respectively, compared with the rates of the parent ΔhupL strain. The hydrogen production activity of the ΔhupL ΔnifV1 mutant was sustained at higher levels than the activity of the parent ΔhupL strain after about 2 days of combined-nitrogen step down, and the activity in the culture of the former became higher than that in the culture of the latter. The presence of N2 gas inhibited hydrogen production in the ΔhupL ΔnifV1 ΔnifV2 mutant less strongly than in the parent ΔhupL strain and the ΔhupL ΔnifV1 and ΔhupL ΔnifV2 mutants. The alteration of homocitrate synthase activity can be a useful strategy for improving sustained photobiological hydrogen production in cyanobacteria.  相似文献   

5.
A series of Methanosarcina barkeri mutants lacking the genes encoding the enzymes involved in the C1 oxidation/reduction pathway were constructed. Mutants lacking the methyl-tetrahydromethanopterin (H4MPT):coenzyme M (CoM) methyltransferase-encoding operon (Δmtr), the methylene-H4MPT reductase-encoding gene (Δmer), the methylene-H4MPT dehydrogenase-encoding gene (Δmtd), and the formyl-methanofuran:H4MPT formyl-transferase-encoding gene (Δftr) all failed to grow using either methanol or H2/CO2 as a growth substrate, indicating that there is an absolute requirement for the C1 oxidation/reduction pathway for hydrogenotrophic and methylotrophic methanogenesis. The mutants also failed to grow on acetate, and we suggest that this was due to an inability to generate the reducing equivalents needed for biosynthetic reactions. Despite their lack of growth on methanol, the Δmtr and Δmer mutants were capable of producing methane from this substrate, whereas the Δmtd and Δftr mutants were not. Thus, there is an Mtr/Mer bypass pathway that allows oxidation of methanol to the level of methylene-H4MPT in M. barkeri. The data further suggested that formaldehyde may be an intermediate in this bypass; however, no methanol dehydrogenase activity was found in Δmtr cell extracts, nor was there an obligate role for the formaldehyde-activating enzyme (Fae), which has been shown to catalyze the condensation of formaldehyde and H4MPT in vitro. Both the Δmer and Δmtr mutants were able to grow on a combination of methanol plus acetate, but they did so by metabolic pathways that are clearly distinct from each other and from previously characterized methanogenic pathways.  相似文献   

6.
Although anaerobic glycerol metabolism in Enterococcus faecalis requires exogenous fumarate for NADH oxidation, E. faecalis strain W11 can metabolize glycerol in the absence of oxygen without exogenous fumarate. In this study, metabolic end product analyses and reporter assays probing the expression of enzymes involved in pyruvate metabolism were performed to investigate this fumarate-independent anaerobic metabolism of glycerol in W11. Under aerobic conditions, the metabolic end products of W11 cultured with glycerol were similar to those of W11 cultured with glucose. However, when W11 was cultured anaerobically, most of the glucose was converted to l-lactate, but glycerol was converted to ethanol and formate. During anaerobic culture with glycerol, the expression of the l-lactate dehydrogenase and pyruvate dehydrogenase E1αβ genes in W11 was downregulated, whereas the expression of the pyruvate formate-lyase (Pfl) and aldehyde/alcohol dehydrogenase genes was upregulated. These changes in the expression levels caused the change in the composition of end products. A pflB gene disruptant (Δpfl mutant) of W11 could barely utilize glycerol under anaerobic conditions, but the growth of the Δpfl mutant cultured with either glucose or dihydroxyacetone (DHA) under anaerobic conditions was the same as that of W11. Glucose metabolism and DHA generates one NADH molecule per pyruvate molecule, whereas glycerol metabolism in the dehydrogenation pathway generates two NADH molecules per pyruvate molecule. These findings demonstrate that NADH generated from anaerobic glycerol metabolism in the absence of fumarate is oxidized through the Pfl-ethanol fermentation pathway. Thus, Pfl is essential to avoid the accumulation of excess NADH during fumarate-independent anaerobic glycerol metabolism.  相似文献   

7.
The CreBC (carbon source-responsive) two-component regulation system of Escherichia coli affects a number of functions, including intermediary carbon catabolism. The impacts of different creC mutations (a ΔcreC mutant and a mutant carrying the constitutive creC510 allele) on bacterial physiology were analyzed in glucose cultures under three oxygen availability conditions. Differences in the amounts of extracellular metabolites produced were observed in the null mutant compared to the wild-type strain and the mutant carrying creC510 and shown to be affected by oxygen availability. The ΔcreC strain secreted more formate, succinate, and acetate but less lactate under low aeration. These metabolic changes were associated with differences in AckA and LdhA activities, both of which were affected by CreC. Measurement of the NAD(P)H/NAD(P)+ ratios showed that the creC510 strain had a more reduced intracellular redox state, while the opposite was observed for the ΔcreC mutant, particularly under intermediate oxygen availability conditions, indicating that CreC affects redox balance. The null mutant formed more succinate than the wild-type strain under both low aeration and no aeration. Overexpression of the genes encoding phosphoenolpyruvate carboxylase from E. coli and a NADH-forming formate dehydrogenase from Candida boidinii in the ΔcreC mutant further increased the yield of succinate on glucose. Interestingly, the elimination of ackA and adhE did not significantly improve the production of succinate. The diverse metabolic effects of this regulator on the central biochemical network of E. coli make it a good candidate for metabolic-engineering manipulations to enhance the formation of bioproducts, such as succinate.  相似文献   

8.
9.
Methanol is already an important carbon feedstock in the chemical industry, but it has found only limited application in biotechnological production processes. This can be mostly attributed to the inability of most microbial platform organisms to utilize methanol as a carbon and energy source. With the aim to turn methanol into a suitable feedstock for microbial production processes, we engineered the industrially important but nonmethylotrophic bacterium Corynebacterium glutamicum toward the utilization of methanol as an auxiliary carbon source in a sugar-based medium. Initial oxidation of methanol to formaldehyde was achieved by heterologous expression of a methanol dehydrogenase from Bacillus methanolicus, whereas assimilation of formaldehyde was realized by implementing the two key enzymes of the ribulose monophosphate pathway of Bacillus subtilis: 3-hexulose-6-phosphate synthase and 6-phospho-3-hexuloisomerase. The recombinant C. glutamicum strain showed an average methanol consumption rate of 1.7 ± 0.3 mM/h (mean ± standard deviation) in a glucose-methanol medium, and the culture grew to a higher cell density than in medium without methanol. In addition, [13C]methanol-labeling experiments revealed labeling fractions of 3 to 10% in the m + 1 mass isotopomers of various intracellular metabolites. In the background of a C. glutamicum Δald ΔadhE mutant being strongly impaired in its ability to oxidize formaldehyde to CO2, the m + 1 labeling of these intermediates was increased (8 to 25%), pointing toward higher formaldehyde assimilation capabilities of this strain. The engineered C. glutamicum strains represent a promising starting point for the development of sugar-based biotechnological production processes using methanol as an auxiliary substrate.  相似文献   

10.
Methanococcus maripaludis, an H2- and formate-utilizing methanogen, produced H2 at high rates from formate. The rates and kinetics of H2 production depended upon the growth conditions, and H2 availability during growth was a major factor. Specific activities of resting cells grown with formate or H2 were 0.4 to 1.4 U·mg−1 (dry weight). H2 production in formate-grown cells followed Michaelis-Menten kinetics, and the concentration of formate required for half-maximal activity (Kf) was 3.6 mM. In contrast, in H2-grown cells this process followed sigmoidal kinetics, and the Kf was 9 mM. A key enzyme for formate-dependent H2 production was formate dehydrogenase, Fdh. H2 production and growth were severely reduced in a mutant containing a deletion of the gene encoding the Fdh1 isozyme, indicating that it was the primary Fdh. In contrast, a mutant containing a deletion of the gene encoding the Fdh2 isozyme possessed near-wild-type activities, indicating that this isozyme did not play a major role. H2 production by a mutant containing a deletion of the coenzyme F420-reducing hydrogenase Fru was also severely reduced, suggesting that the major pathway of H2 production comprised Fdh1 and Fru. Because a Δfrufrc mutant retained 10% of the wild-type activity, an additional pathway is present. Mutants possessing deletions of the gene encoding the F420-dependent methylene-H4MTP dehydrogenase (Mtd) or the H2-forming methylene-H4MTP dehydrogenase (Hmd) also possessed reduced activity, which suggested that this second pathway was comprised of Fdh1-Mtd-Hmd. In contrast to H2 production, the cellular rates of methanogenesis were unaffected in these mutants, which suggested that the observed H2 production was not a direct intermediate of methanogenesis. In conclusion, high rates of formate-dependent H2 production demonstrated the potential of M. maripaludis for the microbial production of H2 from formate.  相似文献   

11.
It is now established that the mitochondrial production of formate is a major process in the endogenous generation of folate-linked one-carbon groups. We have developed an in vivo approach involving the constant infusion of [13C]formate until isotopic steady state is attained to measure the rate of endogenous formate production in rats fed on either a folate-replete or folate-deficient diet. Formate was produced at a rate of 76 μmol·h−1·100 g of body weight−1 in the folate-replete rats, and this was decreased by 44% in folate-deficient rats. This decreased formate production was confirmed in isolated rat liver mitochondria where formate production from serine, the principal precursor of one-carbon groups, was decreased by 85%, although formate production from sarcosine and dimethylglycine (choline metabolites) was significantly increased. We attribute this unexpected result to the demonstrated production of formaldehyde by sarcosine dehydrogenase and dimethylglycine dehydrogenase from their respective substrates in the absence of tetrahydrofolate and subsequent formation of formate by formaldehyde dehydrogenase. Comparison of formate production with the ingestion of dietary formate precursors (serine, glycine, tryptophan, histidine, methionine, and choline) showed that ∼75% of these precursors were converted to formate, indicating that formate is a significant, although underappreciated end product of choline and amino acid oxidation. Ingestion of a high protein diet did not result in increased production of formate, suggesting a regulation of the conversion of these precursors at the mitochondrial level to formate.  相似文献   

12.
Production of β-lactams by the filamentous fungus Penicillium chrysogenum requires a substantial input of ATP. During glucose-limited growth, this ATP is derived from glucose dissimilation, which reduces the product yield on glucose. The present study has investigated whether penicillin G yields on glucose can be enhanced by cofeeding of an auxiliary substrate that acts as an energy source but not as a carbon substrate. As a model system, a high-producing industrial strain of P. chrysogenum was grown in chemostat cultures on mixed substrates containing different molar ratios of formate and glucose. Up to a formate-to-glucose ratio of 4.5 mol·mol−1, an increasing rate of formate oxidation via a cytosolic NAD+-dependent formate dehydrogenase increasingly replaced the dissimilatory flow of glucose. This resulted in increased biomass yields on glucose. Since at these formate-to-glucose ratios the specific penicillin G production rate remained constant, the volumetric productivity increased. Metabolic modeling studies indicated that formate transport in P. chrysogenum does not require an input of free energy. At formate-to-glucose ratios above 4.5 mol·mol−1, the residual formate concentrations in the cultures increased, probably due to kinetic constraints in the formate-oxidizing system. The accumulation of formate coincided with a loss of the coupling between formate oxidation and the production of biomass and penicillin G. These results demonstrate that, in principle, mixed-substrate feeding can be used to increase the yield on a carbon source of assimilatory products such as β-lactams.  相似文献   

13.
14.
15.
Industrial biocatalytic reduction processes require the efficient regeneration of reduced cofactors for the asymmetric reduction of prochiral compounds to chiral intermediates which are needed for the production of fine chemicals and drugs. Here, we present a new engineering strategy for improved NADH regeneration based on the Pichia pastoris methanol oxidation pathway. Studying the kinetic properties of alcohol oxidase (AOX), formaldehyde dehydrogenase (FLD) and formate dehydrogenase (FDH) and using the derived kinetic data for subsequent kinetic simulations of NADH formation rates led to the identification of FLD activity to constitute the main bottleneck for efficient NADH recycling via the methanol dissimilation pathway. The simulation results were confirmed constructing a recombinant P. pastoris strain overexpressing P. pastoris FLD and the highly active NADH-dependent butanediol dehydrogenase from S. cerevisiae. Employing the engineered strain, significantly improved butanediol production rates were achieved in whole-cell biotransformations.  相似文献   

16.
Pichia pastoris KM71H (MutS) is an efficient producer of hard-to-express proteins such as the membrane protein P-glycoprotein (Pgp), an ATP-powered efflux pump which is expressed properly, but at very low concentration, using the conventional induction strategy. Evaluation of different induction strategies indicated that it was possible to increase Pgp expression by inducing the culture with 20% media containing 2.5% methanol. By quantifying methanol, formaldehyde, hydrogen peroxide and formate, and by measuring alcohol oxidase, catalase, formaldehyde dehydrogenase, formate dehydrogenase, malate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenases, it was possible to correlate Pgp expression to the induction strategy. Inducing the culture by adding methanol with fresh media was associated with decreases in formaldehyde and hydrogen peroxide, and increases in formaldehyde dehydrogenase, formate dehydrogenase, isocitrate dehydrogenase and α-ketoglutarate dehydrogenases. At these conditions, Pgp expression was 1400-fold higher, an indication that Pgp expression is affected by increases in formaldehyde and hydrogen peroxide. It is possible that Pgp is responsible for this behaviour, since the increased metabolite concentrations and decreased enzymatic activities were not observed when parental Pichia was subjected to the same growth conditions. This report adds information on methanol metabolism during expression of Pgp from P. pastoris MutS strain and suggests an expression procedure for hard-to-express proteins from P. pastoris.  相似文献   

17.
A long-chain aldehyde dehydrogenase, Ald1, was found in a soluble fraction of Acinetobacter sp. strain M-1 cells grown on n-hexadecane as a sole carbon source. The gene (ald1) was cloned from the chromosomal DNA of the bacterium. The open reading frame of ald1 was 1,512 bp long, corresponding to a protein of 503 amino acid residues (molecular mass, 55,496 Da), and the deduced amino acid sequence showed high similarity to those of various aldehyde dehydrogenases. The ald1 gene was stably expressed in Escherichia coli, and the gene product (recombinant Ald1 [rAld1]) was purified to apparent homogeneity by gel electrophoresis. rAld1 showed enzyme activity toward n-alkanals (C4 to C14), with a preference for longer carbon chains within the tested range; the highest activity was obtained with tetradecanal. The ald1 gene was disrupted by homologous recombination on the Acinetobacter genome. Although the ald1 disruptant (ald1Δ) strain still had the ability to grow on n-hexadecane to some extent, its aldehyde dehydrogenase activity toward n-tetradecanal was reduced to half the level of the wild-type strain. Under nitrogen-limiting conditions, the accumulation of intracellular wax esters in the ald1Δ strain became much lower than that in the wild-type strain. These and other results imply that a soluble long-chain aldehyde dehydrogenase indeed plays important roles both in growth on n-alkane and in wax ester formation in Acinetobacter sp. strain M-1.  相似文献   

18.
Anaerobic Degradation of Uric Acid by Gut Bacteria of Termites   总被引:1,自引:2,他引:1       下载免费PDF全文
A study was done of anaerobic degradation of uric acid (UA) by representative strains of uricolytic bacteria isolated from guts of Reticulitermes flavipes termites. Streptococcus strain UAD-1 degraded UA incompletely, secreting a fluorescent compound into the medium, unless formate (or a formicogenic compound) was present as a cosubstrate. Formate functioned as a reductant, and its oxidation to CO2 by formate dehydrogenase provided 2H+ + 2e needed to drive uricolysis to completion. Uricolysis by Streptococcus UAD-1 thus corresponded to the following equation: 1UA + 1formate → 4CO2 + 1acetate + 4NH3. Urea did not appear to be an intermediate in CO2 and NH3 formation during uricolysis by strain UAD-1. Formate dehydrogenase and uricolytic activities of strain UAD-1 were inducible by growth of cells on UA. Bacteroides termitidis strain UAD-50 degraded UA as follows: 1UA → 3.5 CO2 + 0.75acetate + 4NH3. Exogenous formate was neither required for nor stimulatory to uricolysis by strain UAD-50. Studies of UA catabolism by Citrobacter strains were limited, because only small amounts of UA were metabolized by cells in liquid medium. Uricolytic activity of such bacteria in situ could be important to the carbon, nitrogen, and energy economy of R. flavipes.  相似文献   

19.
The pathogenic yeast Cryptococcus neoformans causes cryptococcosis, a life-threatening fungal disease. C. neoformans has multiple virulence mechanisms that are non-host specific, induce damage and interfere with immune clearance. Microarray analysis of C. neoformans strains serially passaged in mice associated a small gene (CNAG_02591) with virulence. This gene, hereafter identified as HVA1 (hypervirulence-associated protein 1), encodes a protein that has homologs of unknown function in plant and animal fungi, consistent with a conserved mechanism. Expression of HVA1 was negatively correlated with virulence and was reduced in vitro and in vivo in both mouse- and Galleria-passaged strains of C. neoformans. Phenotypic analysis in hva1Δ and hva1Δ+HVA1 strains revealed no significant differences in established virulence factors. Mice infected intravenously with the hva1Δ strain had higher fungal burden in the spleen and brain, but lower fungal burden in the lungs, and died faster than mice infected with H99W or the hva1Δ+HVA1 strain. Metabolomics analysis demonstrated a general increase in all amino acids measured in the disrupted strain and a block in the TCA cycle at isocitrate dehydrogenase, possibly due to alterations in the nicotinamide cofactor pool. Macrophage fungal burden experiments recapitulated the mouse hypervirulent phenotype of the hva1Δ strain only in the presence of exogenous NADPH. The crystal structure of the Hva1 protein was solved, and a comparison of structurally similar proteins correlated with the metabolomics data and potential interactions with NADPH. We report a new gene that modulates virulence through a mechanism associated with changes in fungal metabolism.  相似文献   

20.
In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号