首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Antioxidant effects of antihypoxic drugs in cerebral ischemia]   总被引:5,自引:0,他引:5  
Cerebral ischemia in rats (both carotid arteries occlusion) during 30 min, 3 hours and recirculation (1 hour) after ischemia (30 min) stimulated diene conjugates and fluorescent products accumulation in brain tissue. Intraperitoneal injection of sodium hydroxybutyrate (100 mg/kg), bemitil (50 mg/kg), ethomersol (50 mg/kg) reduced brain lipid peroxidation and did not yield in this respect to emoxypin (5 mg/kg). In contrast to emoxypin, sodium hydroxybutyrate, bemitil and ethomersol had no antiradical activity.  相似文献   

2.
Influence of natrii hydroxybutyrate (100 mg/kg), ascorbate (100 mg/kg), cavinton (5 mg/kg), bemitil (50 mg/kg), ethomersol (50 mg/kg) on Hb-O2 affinity and cortex PO2 after both carotid artery occlusion in rats was investigated. Correlation (r-0.87; P less than 0.05) between lowering of Hb-O2 affinity and antihypoxic effect was demonstrated in the line of these drugs.  相似文献   

3.
The activities and induction patterns of the isoenzymes of alanine aminotransferase (AAT) of the cerebral hemispheres and cerebellum of rats of various ages were studied. The activities of both the soluble (s-) and mitochondrial (m-) isoenzymes of ATT of the cerebral hemispheres and cerebellum were highest in the immature rat and decreased significantly thereafter with increasing age. Adrenalectomy decreased, and hydrocortisone administration increased significantly, the activity of s-AAT in both cerebral hemispheres and cerebellum of immature, adult, and senescent rats. However, these treatments resulted in significant changes in the activity of m-AAT in both tissues of the immature rat only. The hormone-mediated induction of these isoenzymes was actinomycin D-sensitive.  相似文献   

4.
Effects of prostaglandins (PGs) E1, E2, F2 alpha and I2 in a wide range of concentration were examined in mesenteric and cerebral arteries isolated from mature baboons. PGs E1, E2 and F2 alpha at low concentrations (10(-10) to 10(-7) M) elicited relaxation in helically cut strips of cerebral arteries precontracted with phenylephrine. In contrast, the PGs did not cause relaxation in the mesenteric artery. PGI2 (10(-9) to 10(-6) M) produced marked relaxation in both arteries. The EC25 for PGI2 in the mesenteric artery was significantly lower than that in the cerebral artery. During baseline conditions, cerebral arteries contracted in response to high concentrations (greater than 10(-7) M) of PGs E1, E2 and F2 alpha. In mesenteric arteries, a large contraction was induced by PGs F2 alpha and E2 but not by PGE1. Arachidonic acid (10(-6) M) produced an aspirin-inhibitable relaxation in both arteries to a similar extent, so that the vasodilator PG(s) formed in the two different arterial walls appear to exert a similar relaxant action. Thus, the baboon mesenteric artery was more sensitive to PGI2 for the relaxant effect than was the cerebral artery, while PGs F2 alpha, E1 and E2 caused only a contraction in the mesenteric artery but both relaxation and contraction in the cerebral artery.  相似文献   

5.
This study tested the hypothesis that protein kinase C (PKC) has dual regulation on norepinephrine (NE)-mediated inositol 1,4, 5-trisphosphate [Ins (1,4,5)P(3)] pathway and vasoconstriction in cerebral arteries from near-term fetal ( approximately 140 gestational days) and adult sheep. Basal PKC activity values (%membrane bound) in fetal and adult cerebral arteries were 38 +/- 4% and 32 +/- 4%, respectively. In vessels of both age groups, the PKC isoforms alpha, beta(I), beta(II), and delta were relatively abundant. In contrast, compared with the adult, cerebral arteries of the fetus had low levels of PKC-epsilon. In response to 10(-4) M phorbol 12,13-dibutyrate (PDBu; PKC agonist), PKC activity in both fetal and adult cerebral arteries increased 40-50%. After NE stimulation, PKC activation with PDBu exerted negative feedback on Ins(1,4,5)P(3) and intracellular Ca(2+) concentration ([Ca(2+)](i)) in arteries of both age groups. In turn, PKC inhibition with staurosporine resulted in augmented NE-induced Ins(1,4,5)P(3) and [Ca(2+)](i) responses in adult, but not fetal, cerebral arteries. In adult tissues, PKC stimulation by PDBu increased vascular tone, but not [Ca(2+)](i). In contrast, in the fetal artery, PKC stimulation was associated with an increase in both tone and [Ca(2+)](i). In the presence of zero extracellular [Ca(2+)], these PDBu-induced responses were absent in the fetal vessel, whereas they remained unchanged in the adult. We conclude that, although basal PKC activity was similar in fetal and adult cerebral arteries, PKC's role in NE-mediated pharmacomechanical coupling differed significantly in the two age groups. In both fetal and adult cerebral arteries, PKC modulation of NE-induced signal transduction responses would appear to play a significant role in the regulation of vascular tone. The mechanisms differ in the two age groups, however, and this probably relates, in part, to the relative lack of PKC-epsilon in fetal vessels.  相似文献   

6.
目的:观察消栓通胶囊对双侧颈总动脉结扎的大鼠脑缺血的保护作用;对小鼠断头后存活时间的影响.方法:采用结扎大鼠双侧颈总动脉以造成脑缺血模型,观察消栓通胶囊的药理作用.结果:①a.消栓通胶囊对双侧颈总动脉结扎大鼠脑含水量及脑指数有显著影响,消栓通胶囊三个剂量组(0.20 g/kg、0.40 g/kg、0.80 g/kg),脑含水量明显减少,与模型组有显著差异(P<0.05或P<0.01).b.组织病理学检查表明消栓通胶囊组的脑组织神经细胞浓缩及深染较脑缺血模型组明显减轻;神经胶质细胞肿胀及间质疏松程度均明显轻于模型组.②消栓通胶囊三个剂量组(0.20 g/kg、0.40 g/kg、0.80 g/kg)均能明显降低全血粘度值,与模型组比较有明显差异(P<0.05或P<0.01);③消栓通胶囊三个剂量组(025g/kg、0.50g/kg、1.00 g/kg)给药14d,与正常组比较可延长小鼠断头喘气的时间(P<0.05或P<0.01).结论:消栓通胶囊对大鼠结扎双侧颈总动脉所致脑缺血损伤具有明显的保护作用.  相似文献   

7.
The binding of [3H]GABA and [3H]flunitrazepam was performed with synaptic membranes and post-synaptic densities (PSDs) isolated from canine cerebral cortex and cerebellum. Two GABA binding sites were found with cerebral cortex membranes but only one with cerebellar membranes. PSDs isolated from these showed only single binding sites, with cerebellar PSDs exhibiting lower KD values and a larger concentration of sites than did cerebral cortex PSDs. In the case of flunitrazepam, only one binding site was found for all four preparations, with cerebellar PSDs having twice the concentration of sites of cerebral PSDs. Photoaffinity labeling of the flunitrazepam receptor in PSDs resulted in the binding to a 51,000 Mr protein in both cases, with cerebellar PSDs again showing an increased concentration over that found in cerebral cortex PSDs. Based on this work, and on earlier work of ourselves and of others, we conclude that both populations of isolated PSDs contain inhibitory sites, but that the intact PSDs in both preparations are derived from Gray type I, probably excitatory, synapses, and that the inhibitory sites are found in the broken-up material in the PSD fractions which are derived from Gray type II, probably inhibitory, synapses.  相似文献   

8.
Previous studies have indicated the importance of basement membrane components both for cellular differentiation in general and for the barrier properties of cerebral microvascular endothelial cells in particular. Therefore, we have examined the expression of basement membrane proteins in primary capillary endothelial cell cultures from adult porcine brain. By indirect immunofluorescence, we could detect type IV collagen, fibronectin, and laminin both in vivo (basal lamina of cerebral capillaries) and in vitro (primary culture of cerebral capillary endothelial cells). In culture, these proteins were secreted at the subcellular matrix. Moreover, the interaction between basement membrane constituents and cerebral capillary endothelial cells was studied in adhesion assays. Type IV collagen, fibronectin, and laminin proved to be good adhesive substrata for these cells. Although the number of adherent cells did not differ significantly between the individual proteins, spreading on fibronectin was more pronounced than on type IV collagen or laminin. Our results suggest that type IV collagen, fibronectin, and laminin are not only major components of the cerebral microvascular basal lamina, but also assemble into a protein network, which resembles basement membrane, in cerebral capillary endothelial cell cultures.  相似文献   

9.
Acute cerebral ischemia in cats (both carotid arteries occlusion during 30 min after permanent occlusion of both vertebral arteries) was accompanied by postischemic hypoperfusion and hypo-oxygenation of the cerebral tissue. Intravenous infusion of cerebrocrast (1 micrograms.kg-1.min-1 during 60 min) prevented manifestation of the postischemic phenomena. Antihypoxic effect of cerebrocrast involved the cerebral blood flow increase, brain oxygen consumption lowering and Hb-O2-affinity decrease.  相似文献   

10.
Microglia have been attracting much attention because of their fundamental importance in both the mature brain and the developing brain. Though important roles of microglia in the developing cerebral cortex of mice have been uncovered, their distribution and roles in the developing cerebral cortex in gyrencephalic higher mammals have remained elusive. Here we examined the distribution and morphology of microglia in the developing cerebral cortex of gyrencephalic carnivore ferrets. We found that a number of microglia were accumulated in the germinal zones (GZs), especially in the outer subventricular zone (OSVZ), which is a GZ found in higher mammals. Furthermore, we uncovered that microglia extended their processes tangentially along inner fiber layer (IFL)-like fibers in the developing ferret cortex. The OSVZ and the IFL are the prominent features of the cerebral cortex of higher mammals. Our findings indicate that microglia may play important roles in the OSVZ and the IFL in the developing cerebral cortex of higher mammals.  相似文献   

11.
Pharmacokinetics of cadmium chloride (109Cd) in blood and cerebral structures in male Wistar rats is studied. Blood kinetics is obtained after intravenous administration of 20 microCi 109Cd; the element is distributed according to an open bicompartimental model with a high alpha deposition constant. The half-life of the alpha-phase is 0.043 hours and the half-life of the beta-phase is 5.54 hours. The kinetics of 109Cd in cerebral structures is calculated after injection of a total amount of 1 microCi in both lateral ventricles. Cadmium radionuclide in cerebral structures of the rat is rapidly fixed from the cerebral fluid, but released slowly. The structure of major accumulation is striatum and that of minor accumulation is cerebellum.  相似文献   

12.
Developmental changes in the distribution of parvalbumin-specific immunoreactivity in the brain, in particular in the cerebral cortex and hippocampus, were followed immunohistochemically in two different species, the rat and the Mongolian gerbil (Meriones unguiculatus) using an antibody raised against for rat parvalbumin. The gerbil is known to develop its auditory and visual capacity later than rat. In both the rat and gerbil, parvalbumin-specific immunoreactivity appeared after birth in both the cerebral cortex and hippocampus. The timing of the development of expression of parvalbumin varied among different parts of the cerebral cortex. The parietal cortex showed evidence of the earliest expression of parvalbumin whilst the occipital and temporal cortices expressed parvalbumin at a later stage of a development. This feature was common to both the rat and gerbil but occurred at a relatively later stage in the gerbil. The profile of the distribution of parvalbumin in the brain of the developing and adult gerbil was similar to that of the rat, but there were some differences. The frequency of bead-like structures on the dendrites of the parvalbumin-positive cells in the CA1 region of the hippocampus was markedly lower in the gerbil; instead, straight non-beaded fibers which ran vertically into the pyramidal layer were stained. Parvalbumin-positive fibers were also found in the cerebral cortex of the gerbil.  相似文献   

13.
The presence of a cholinergic vasodilator innervation to cerebral circulation is well established. Despite its high endogenous concentration in cerebral blood vessels, acetylcholine (ACh) is not the transmitter for vasodilation. This finding has led to the discovery that nitric oxide (NO), which is coreleased with ACh and neural peptides such as vasoactive intestinal polypeptide (VIP) from the respective cholinergic-nitrergic (nitric oxidergic) nerves and the VIPergic-nitrergic nerves, is the primary transmitter in relaxing smooth muscle. ACh and VIP act presynaptically to inhibit and facilitate, respectively, the release of NO. Release of NO from cerebral vascular endothelial cells is also well established. A similar system for recycling L-citrulline to L-arginine for synthesizing more NO has been demonstrated in both cerebral perivascular nerves and endothelial cells. Neuronal and endothelial NO appears to play an important role in controlling cerebral vascular tone and circulation in health and disease.  相似文献   

14.
Summary Developmental changes in the distribution of parvalbumin-specific immunoreactivity in the brain, in particular in the cerebral cortex and hippocampus, were followed immunohistochemically in two different species, the rat and the Mongolian gerbil (Meriones unguiculatus) using an antibody raised against for rat parvalbumin. The gerbil is known to develop its auditory and visual capacity later than rat. In both the rat and gerbil, parvalbumin-specific immunoreactivity appeared after birth in both the cerebral cortex and hippocampus. The timing of the development of expression of parvalbumin varied among different parts of the cerebral cortex. The parietal cortex showed evidence of the earliest expression of parvalbumin whilst the occipital and temporal cortices expressed parvalbumin at a later stage of a development. This feature was common to both the rat and gerbil but occurred at a relatively later stage in the gerbil. The profile of the distribution of parvalbumin in the brain of the developing and adult gerbil was similar to that of the rat, but there were some differences. The frequency of bead-like structures on the dendrites of the parvalbumin-positive cells in the CA1 region of the hippocampus was markedly lower in the gerbil; instead, straight non-beaded fibers which ran vertically into the pyramidal layer were stained. Parvalbumin-positive fibers were also found in the cerebral cortex of the gerbil.  相似文献   

15.
The purpose of this work was to evaluate the effects of equipotent doses of two different inhibitors of cyclo-oxygenase, indomethacin and aspirin, on cerebral blood flow and cerebral vascular resistances in the conscious undisturbed rat, using the reference sample radioactive microsphere method. We found that both, aspirin (50 mg/kg) and indomethacin (5 mg/kg) at 3, 15 and 60 min after their intravenous administration, increased cerebral vascular resistances and decreased cerebral blood flow to a similar extent. Both drugs completely abolished the hypotensive effect of 5 mg/kg i.v. arachidonic acid and they did not change arterial PO2, PCO2 or pH values. We conclude that the pharmacological inhibition of cyclooxygenase in the conscious undisturbed rat leads to a cerebral vasoconstriction and consequently to a decrease in cerebral blood flow. Our results evidence that prostaglandins are a physiological factor that actively contributes to the maintenance of cerebral circulation.  相似文献   

16.
In order to investigate changes in levels of monoamines and their related substances together with those of other neurotransmitters (acetylcholine and GABA), choline and substances related to energy metabolism (ATP, lactate and glucose) accompanying incomplete cerebral ischemia, a bilateral common carotid artery occlusion model of spontaneously hypertensive rats (SHR) was utilized. Animals were subjected to 1 or 2 h ischemia. Then the concentrations of substances were measured in the cerebral cortex, hippocampus and striatum and compared with control values. Due to the incomplete ischemia, ATP showed a moderate decrease, while lactate and choline increased remarkably, and GABA underwent a moderate increase. With regard to monoamines, both noradrenaline and serotonin levels were reduced in the cerebral cortex and hippocampus, whereas dopamine levels increased in the hippocampus. All monoamine metabolites, i.e. metabolites by monoamine oxidase (MAO), metabolites by catechol-O-methyltransferase (COMT), and metabolites by both MAO and COMT, underwent increases. The 3-methoxytyramine level in particular showed marked increases. Furthermore levels of precursor amino acids as well as 5-hydroxytryptophan rose. Acetylcholine decreased moderately only in the cerebral cortex. Among these changes, sustained increases in all the monoamine metabolites were characteristic in the incompletely ischemic brain, suggesting that both COMT and MAO retain their activities in the incompletely ischemic brain.  相似文献   

17.
We use the modified pial vessel disruption rat model to elucidate the cellular and molecular mechanisms of cavitation as it plays a role in lacunar infarction. Here we discuss the similarities between the genesis of pulmonary cavitation in various animal models and lacunar infarction in the cerebral cortex of rats. Both pathological processes involve the creation of a cavity surrounded by fibroblasts or reactive astrocytes. A crucial step in both, the lung and the cerebral cortex, appears to be the migration of neutrophils across the endothelial barrier into the parenchyma. In the lung and cerebral cortex this involves release of matrix metalloproteinase-9 (MMP-9). Inside the parenchyma neutrophils continue to release MMP-9. In both situations batimastat (BB-94) and minocycline reduce release of MMP-9 and prevent cavitation. In the cerebral cortex MMP-9 release by resident microglia plays an additional role. We therefore advance the hypothesis that cavitation in both tissues is driven by MMP-9 originating from invading neutrophils. Therapeutic intervention has to focus on these blood-borne intruder cells and specific MMP actions. Batimastat and its derivatives (marimastat, BB-1101, mCGS-27023-A, ilomastat, GM6001, CTK8G1150) are already in clinical or experimental use in humans for anti-cancer treatment, and these clinically relevant drugs could be repurposed to act as anti-inflammatory to counter neutrophil contribution to lung or cerebral cortex cavitation.  相似文献   

18.
Apoptosis and neural degeneration are characteristics of cerebral ischemia and brain damage. Diabetes is associated with worsening of brain damage following ischemic events. In this study, the authors characterize the influence of focal cerebral ischemia, induced by middle cerebral artery occlusion, on 2 indexes of apoptosis,TUNEL(terminal deoxynucleotidyl transferase–mediated deoxyuridine 5-triphosphate nick end-labeling) staining and caspase- 3 immunohistochemistry. Diabetes was induced in normal rats using streptozotocin and maintained for 5 to 6 weeks. The middle cerebral artery of both normal and diabetic rats was occluded and maintained from 24 or 48 hours. Sham-operated normal and diabetic animals served as controls. Following 24 to 48 hours of occlusion, the animals were sacrificed and the brains were removed, sectioned, and processed for TUNEL staining or caspase-3 immunohistochemistry. Middle cerebral artery occlusion in normal rats was associated with an increase in the number of both TUNEL-positive and caspase-3– positive cells in selected brain regions (hypothalamic preoptic area, piriform cortex, and parietal cortex) when compared to nonoccluded controls. Diabetic rats without occlusion showed significant increases in both TUNEL-positive and caspase-3–positive cells compared to normal controls. Middle cerebral artery occlusion in diabetic rats resulted in increases in TUNEL-positive as well as caspase-3–positive cells in selected regions, above those seen in nonoccluded diabetic rats. Both TUNEL staining and caspase-3 immunohistochemistry revealed that the number of apoptotic cells in diabetic animals tended to be greatest in the preoptic area and parietal cortex. The authors conclude that focal cerebral ischemia is associated with a significant increase in apoptosis in nondiabetic rats, and that diabetes alone or diabetes plus focal ischemia are associated with significant increases in apoptotic cells.  相似文献   

19.
20.
Previous attempts to detect global cerebral hemodynamic differences between those who develop headache, nausea, and fatigue following rapid exposure to hypoxia [acute mountain sickness (AMS)] and those who remain healthy have been inconclusive. In this study, we investigated the effects of two drugs known to reduce symptoms of AMS to determine if a common cerebral hemodynamic mechanism could explain the prophylactic effect within individuals. With the use of randomized, placebo-controlled, double-blind, crossover design, 20 healthy volunteers were given oral acetazolamide (250 mg), dexamethasone (4 mg), or placebo every 8 h for 24 h prior to and during a 10-h exposure to a simulated altitude of 4,875 m in a hypobaric chamber, which included 2 h of exercise at 50% of altitude-specific VO(2max). Cerebral hemodynamic parameters derived from ultrasound assessments of dynamic cerebral autoregulation and vasomotor reactivity were recorded 15 h prior to and after 9 h of hypoxia. AMS symptoms were scored using the Lake Louise Questionnaire (LLQ). It was found that both drugs prevented AMS in those who became ill on placebo (~70% decrease in LLQ), yet a common cerebral hemodynamic mechanism was not identified. Compared with placebo, acetazolamide reduced middle cerebral artery blood flow velocity (11%) and improved dynamic cerebral autoregulation after 9 h of hypoxia, but these effects appeared independent of AMS. Dexamethasone had no measureable cerebral hemodynamic effects in hypoxia. In conclusion, global cerebral hemodynamic changes resulting from hypoxia may not explain the development of AMS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号