首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tenascin in the developing and adult human intestine   总被引:6,自引:0,他引:6  
The tenascins are a family of multifunctional extracellular matrix glycoproteins subject to complex spatial and temporal patterns of expression in the course of various organogenetic processes, namely those involving epithelial-mesenchymal interactions. In the intestine, the tenascins, in particular tenascin-C, have been found to be differentially expressed in the developing and adult small intestinal and colonic mucosa as well as in neoplasm. While tenascin-C emerges as a key player likely to be involved in intestinal mucosa development, maintenance and disease, its exact role in the regulation of fundamental intestinal cell function(s) such as proliferation, migration and tissue-specific gene expression remains however to be established.  相似文献   

2.
Nestin expression in adult and developing human kidney.   总被引:1,自引:0,他引:1  
Nestin is considered a marker of neurogenic and myogenic precursor cells. Its arrangement is regulated by cyclin-dependent kinase 5 (CDK5), which is expressed in murine podocytes. We investigated nestin expression in human adult and fetal kidney as well as CDK5 presence in adult human podocytes. Confocal microscopy demonstrated that adult glomeruli display nestin immunoreactivity in vimentin-expressing cells with the podocyte morphology and not in cells bearing the endothelial marker CD31. Glomerular nestin-positive cells were CDK5 immunoreactive as well. Western blotting of the intermediate filament-enriched cytoskeletal fraction and coimmunoprecipitation of nestin with anti-CDK5 antibodies confirmed these results. Nestin was also detected in developing glomeruli within immature podocytes and a few other cells. Confocal microscopy of experiments conducted with antibodies against nestin and endothelial markers demonstrated that endothelial cells belonging to capillaries invading the lower cleft of S-shaped bodies and the immature glomeruli were nestin immunoreactive. Similar experiments carried out with antibodies raised against nestin and alpha-smooth muscle actin showed that the first mesangial cells that populate the developing glomeruli expressed nestin. In conclusion, nestin is expressed in the human kidney from the first steps of glomerulogenesis within podocytes, mesangial, and endothelial cells. This expression, restricted to podocytes in mature glomeruli, appears associated with CDK5.  相似文献   

3.
The aim of this immunohistochemical investigation was to study the distribution of the novel cytoskeletal protein smoothelin and the intermediate filament proteins vimentin and desmin in normal human great saphenous vein and in human aortocoronary by-pass vein grafts. Smoothelin was present in most smooth muscle cells in the media of the native vein. In the neointima of the vein grafts that had been in situ for three months or more, smoothelin was, in general, present only in few smooth muscle cells. Desmin was distributed in the same pattern as smoothelin in the native great saphenous vein. When desmin and smoothelin were present in the neointima, smoothelin was detected in more cells than desmin. Vimentin was present in most cells in all wall layers of both the native saphenous vein and the vein grafts. Vascular smooth muscle cells containing vimentin but not desmin or smoothelin are the principal cells in the neointima of human aortocoronary vein grafts. In some grafts, however, all three cytoskeletal proteins were detected in the neointima. The distribution of smoothelin and desmin in aortocoronary vein grafts support the postulate that these proteins are expressed mainly in the contractile smooth muscle cell phenotype.  相似文献   

4.
In addition to being the specialized site for transmission of force from the muscle to the tendon, the myotendinous junction (MTJ) also plays an important role in muscle splitting during morphogenesis. An early event in the formation of the MTJ is a regional deposition of basement membranes. We used immunocytochemistry to investigate the distribution of laminin chains during the development of MTJs in human limb muscle at 8-22 weeks of gestation (wg) and in adult MTJs. We used polyclonal antibodies and a new monoclonal antibody (MAb) against the human laminin alpha1 G4/G5 domains. At 8-10 wg, laminin alpha1 and laminin alpha5 chains were specifically localized to the MTJ. Laminin alpha1 chain remained restricted to the MTJ at 22 wg as the laminin beta2 chain had appeared, whereas the laminin alpha5 chain became deposited along the entire length of the myotubes from 12 wg. In the adult MTJ, only vestigial amounts of laminin alpha1 and laminin alpha5 chains could be detected. On the basis of co-distribution data, we speculate that laminin alpha1 chain in the forming MTJ undergoes an isoform switch from laminin 1 to laminin 3. Our data indicate a potentially important role for laminin alpha1 chain in skeletal muscle formation. (J Histochem Cytochem 48:201-209, 2000)  相似文献   

5.
Keratin 19 expression in the adult and developing human mammary gland   总被引:1,自引:0,他引:1  
Summary In the adult human mammary gland, most of the luminal epithelial cells express keratin 19 (K19+). However, in some small ducts and terminal ductal lobular units where branching would be expected to occur during pregnancy, the pattern of expression of this keratin is heterogeneous. While the keratin 19 negative cells (K19–) appear to have a high proliferative potentialin vitro andin vivo, they have a lower secretory activity than the K19+ cells as monitored by expression of secretory component in the resting breast or casein in the pregnant gland.That the K19– cells form a separate proliferative compartment in the luminal cell lineage is suggested by the fact that they are absent in the prepubertal breast and only appear at puberty associated with branching ducts, and newly formed lobules. Our observations are consistent with the hypothesis that the K19– luminal cell is less differentiated than and may be precursor to the K19+ luminal cell, which represents the fully differentiated phenotype able to produce milk in response to a hormonal stimulus.  相似文献   

6.
Alpha smooth muscle actin expression in developing and adult human lung   总被引:2,自引:0,他引:2  
Abstract. Myofibroblast-like cells containing smooth muscle actin have been identified in lung injury and repair. These cells differ from typical smooth muscle cells by architectural configuration, location and lack of smooth muscle myosin. Their progenitors are unknown. We hypothesized that these cells might have a developmental analog critical to lung morphogenesis. Lung tissue from developing and adult human lungs was studied using a highly specific monoclonal antibody directed against alpha smooth muscle actin (ASMA). Cells im-munoreactive for ASMA (ASMA cells) were identified prenatally in the form of smooth muscle investing the developing vasculature and airway structures. ASMA was not expressed in undifferentiated mesenchymal cells at any prenatal stage. Late in development, ASMA cells within the lung acinus increased proportionally to terminal airway and vascular complexity. In the early postnatal period, the specific distribution of ASMA cells within inflated lung became clearer, and three populations were identified: (1) typical smooth muscle investing the large airways and blood vessels; (2) small clusters of cells with in the acinus distributed at the tips of septa protruding into the alveolar duct; (3) individual cells within the alveolar sac sparsely distributed near the junctions of individual alveoli, frequently in association with small blood vessels. We conclude that ASMA cells appear only in developing small and large airways and pulmonary vessels and that they may play a critical role in branching morphogenesis during development.  相似文献   

7.
Nitric oxide synthase (NOS) catalyzes the formation of nitric oxide (NO) from L-arginine. In this study, the cellular localization of neuronal NOS (nNOS) activity in the human retina since fetal development was examined by immunohistochemistry. No detectable staining in the fetal retina was present at 14 weeks of gestation (wg), the earliest age group examined. A centro-peripheral gradient of development of nNOS immunoreactivity was evident at 16–17 wg, with the midperipheral retina showing nNOS immunoreactivity in most of the cell types and the inner plexiform layer while the peripheral part demonstrated moderate immunoreactivity only in the ganglion cell layer and photoreceptor precursors. A transient increase in nNOS immunoreactivity in the ganglion cells and Müller cell endfeet between 18–19 and 24–25 wg was observed at the time when programmed cell death in the ganglion cell layer, loss of optic nerve fibres as well as increase in glutamate immunoreactivity and parvalbumin (a calcium binding protein) immunoreactivity in the ganglion cells was reported. These observations indicate that programmed cell death of ganglion cells in the retina may be linked to glutamate toxicity and NO activity, as also suggested by others in the retina and cerebral cortex. The presence of nNOS immunoreactivity in the photoreceptors from 16–17 weeks of fetal life to adulthood indicates other functions, besides their involvement in photoreceptor function of transduction and information processing.  相似文献   

8.
The formation of endothelial tight junctions (TJs) is crucial in blood-brain barrier (BBB) differentiation, and the expression and targeting of TJ-associated proteins mark the beginning of BBB functions. Using confocal microscopy, this study analyzed endothelial TJs in adult human cerebral cortex and the fetal telencephalon and leptomeninges in order to compare the localization of two TJ-associated transmembrane proteins, occludin and claudin-5. In the arterioles and microvessels of adult brain, occludin and claudin-5 form continuous bands of endothelial immunoreactivity. During fetal development, occludin and claudin-5 immunoreactivity is first detected as a diffuse labeling of endothelial cytoplasm. Later, at 14 weeks, the immunosignal for both proteins shifts from the cytoplasm to the interface of adjacent endothelial cells, forming a linear, widely discontinuous pattern of immunoreactivity that achieves an adult-like appearance within a few weeks. These results demonstrate that occludin and claudin-5 expression is an early event in human brain development, followed shortly by assembly of both proteins at the junctional areas. This incremental process suggests more rapid establishment of the human BBB, consistent with its specific function of creating a suitable environment for neuron differentiation and neurite outgrowth during neocortical histogenesis.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00418-004-0665-1Daniela Virgintino and Mariella Errede contributed equally to this work  相似文献   

9.
This report provides a detailed analysis of developmental changes in cytoplasmic free calcium (Ca(2+)) buffering and excitation-contraction coupling in embryonic chick ventricular myocytes. The peak magnitude of field-stimulated Ca(2+) transients declined by 41% between embryonic day (ED) 5 and 15, with most of the decline occurring between ED5 and 11. This was due primarily to a decrease in Ca(2+) currents. Sarcoplasmic reticulum (SR) Ca(2+) content increased 14-fold from ED5 to 15. Ca(2+) transients in voltage-clamped myocytes after blockade of SR function permitted computation of the fast Ca buffer power of the cytosol as expressed as generalized values of B(max) and K(D). B(max) rose with development whereas K(D) did not change significantly. The computed SR Ca(2+) contribution to the Ca(2+) transient and gain factor for Ca(2+)-induced Ca(2+) release increased markedly between ED5 and 11 and slightly thereafter. These results paralleled the maturation of SR and peripheral couplings reported by others and demonstrated a strong relationship between structure and function in development of excitation-contraction coupling. Modeling of buffer power from estimates of the major cytosolic Ca binding moieties yielded a B(max) and K(D) in reasonable agreement with experiment. From ED5 to 15, troponin C was the major Ca(2+) binding moiety, followed by SR and calmodulin.  相似文献   

10.
Invaginations of the sarcolemma that generate the transverse-axial tubular system (TATS) of the ventricular myocardial cells have begun to develop in the mouse by the time of birth. The formation of the TATS appears to be derived from the repetitive generation of caveolae, which forms "beaded tubules". Beaded tubules are retained in the adult, in which they frequently present a spiraled topography. Development of the TATS progresses so rapidly that complex systems are already present in the cardiac muscle cells of young mice; by 10-14 days of age, the ultrastructure is essentially identical to that of the adult. The mouse myocardial TATS is composed of anastomosed elements that are directed transversely and axially (longitudinally). Many tubules have an oblique orientation, however, and most elements of the TATS are highly pleiomorphic. In this respect the TATS of the mouse heart is relatively primitive in appearance in comparison with the more ordered TATS latticeworks typical of the ventricular cells of other mammals. Stereological analysis of the mouse TATS indicates that the volume fraction (VV) and surface density (SV) are considerably greater than previously reported (3.24% and 0.5028 micron-1, respectively). The most complex ramifications of the TATS are embodied in the subsarcolemmal caveolar system and the deeper tubulovesicular "labyrinths", both of which can be found in early postnatal and adult ventricular cells. In atrial cells, TATS development is initiated several days later than in the ventricular cells. The TATS of adult atrial myocardial cells is less prominent than the ventricular TATS and consists largely of axial elements; the incidence of the TATS, furthermore, is more pronounced in the left than in the right atrium.  相似文献   

11.
Localization of laminin alpha4-chain in developing and adult human tissues.   总被引:3,自引:0,他引:3  
Recent studies suggest important functions for laminin-8 (Ln-8; alpha4beta1gamma1) in vascular and blood cell biology, but its distribution in human tissues has remained elusive. We have raised a monoclonal antibody (MAb) FC10, and by enzyme-linked immunoassay (EIA) and Western blotting techniques we show that it recognizes the human Ln alpha4-chain. Immunoreactivity for the Ln alpha4-chain was localized in tissues of mesodermal origin, such as basement membranes (BMs) of endothelia, adipocytes, and skeletal, smooth, and cardiac muscle cells. In addition, the Ln alpha4-chain was found in regions of some epithelial BMs, including epidermis, salivary glands, pancreas, esophageal and gastric glands, intestinal crypts, and some renal medullary tubules. Developmental differences in the distribution of Ln alpha4-chain were detected in skeletal muscle, walls of vessels, and intestinal crypts. Ln alpha4- and Ln alpha2-chains co-localized in BMs of fetal skeletal muscle cells and in some epithelial BMs, e.g., in gastric glands and acini of pancreas. Cultured human pulmonary artery endothelial (HPAE) cells produced Ln alpha4-chain as M(r) 180,000 and 200,000 doublet and rapidly deposited it to the growth substratum. In cell-free extracellular matrices of human kidney and lung, Ln alpha4-chain was found as M(r) 180,000 protein.  相似文献   

12.
Mechanical responses of myocardium from 16 piglets were studied from 18 hr to 12 days after birth. Tension, time and velocity parameters of contraction and relaxation were determined for every contraction cycle. Increasing the frequency of stimulation in step-changes induced negative inotropy in some muscles regardless of age. Doubling extracellular calcium ion concentration induced a positive force-frequency response in all muscles. Epinephrine increased tension and velocities without affecting contraction time. The ultrastructure was immature even on the 12th postnatal day. We concluded that in newborn piglet hearts, the mechanisms for calcium delivery are not fully developed. Thus, the heart undergoes a transient phase during which at least a principal portion of calcium for the myofibers is supplied by the extracellular fluid. While receptors for catecholamines are present, the time course for their response is immature.  相似文献   

13.
Synaptophysin and syntaxin-1 are membrane proteins that associate with synaptic vesicles and presynaptic active zones at nerve endings, respectively. The former is known to be a good marker of synaptogenesis; this aspect, however, is not clear with syntaxin-1. In this study, the expression of both proteins was examined in the developing human retina and compared with their distribution in postnatal to adult retinas, by immunohistochemistry. In the inner plexiform layer, both were expressed simultaneously at 11–12 weeks of gestation, when synaptogenesis reportedly begins in the central retina. In the outer plexiform layer, however, the immunoreactivities were prominent by 16 weeks of gestation. Their expression in both plexiform layers followed a centre-to-periphery gradient. The immunoreactivities for both proteins were found in the immature photoreceptor, amacrine and ganglion cells; however, synaptophysin was differentially localized in bipolar cells and their axons, and syntaxin was present in some horizontal cells. In postnatal-to-adult retinas, synaptophysin immunoreactivity was prominent in photoreceptor terminals lying in the outer plexiform layer; on the contrary, syntaxin-1 was present in a thin immunoreactive band in this layer. In the inner plexiform layer, however, both were homogeneously distributed. Our study suggests that (i) syntaxin-1 appears in parallel with synapse formation; (ii) synaptogenesis in the human retina might follow a centre-to-periphery gradient; (iii) syntaxin-1 is likely to be absent from ribbon synapses of the outer plexiform layer, but may occur at presynaptic terminals of photoreceptor and horizontal cells, as is apparent from its localization in these cells, which is hitherto unreported for any vertebrate retina.  相似文献   

14.
The intermediate filaments (IF) present in the various cells of human ovaries were studied by immunolocalization using antibodies to cytokeratins (CKs), vimentin, desmin and alpha-smooth muscle (-SM) actin. Oocytes revealed a single paranuclear aggregate, which reacted with antibodies to CKs 8, 18 and 19 both in adult and fetal ovaries. The existence of this aggregate was also documented by electron microscopy. Ovarian surface epithelium and granulosa cells consistently coexpressed CKs 8, 18, 19 and vimentin. During follicle maturation vimentin remained unchanged in the granulosa layer while CKs content decreased, showing variation in the amount and distribution of the different CK-types. Thecal cells of secondary and mature follicles showed -SM actin positivity. These contractile fibres increased in mature follicles. Ordinary fibrous stromal cells showed isolated cells which were desmin and -SM actin positive. A similar pattern of IF expression and distribution existed in all stages of development in fetal and embryonic ovaries. These results indicate that CKs are present in human oocytes and that the coexpression of vimentin and CKs can be regarded as a peculiar feature of all ovarian cell types except oocytes and ordinary stromal cells. Contractile properties have been documented associated with a modification in expression of IF proteins. This is likely to represent an integral part of folliculogenesis along with the functional hormone-dependent changes.  相似文献   

15.
16.
Detailed monitoring of Mg in the body should reveal five interacting chemical pools: pool 1 with the free, ionic, and most mobile Mg in chemical equilibrium with the others; pool 2 with the Mg salts precipitated mainly in the arteries and myocardium; pool 3 and 4, two different reservoirs of Mg; pool 5 with the physiologically bound Mg. The pool size needs to be determined exactly. The Mg content of the mitochondria in the arteries and myocardium is less than the content of K and greater than the content of Ca. These elements are in close equilibrium with each other and with PO3?4. Only within certain limits can the body adjust itself to the interdependent changes of these ions; it is, therefore, important that their combined presence, rather than Mg alone, be quantitatively determined.When the solubility products of Mg3(PO4)2.8H2O or of MgKPO4 are reached, the two salts precipitate inside the cells, seeding further irreversible crystallization of CaMgK. TriMg phosphate nucleates triCa phosphate and the two cause the sarcoma to be filled with tightly packed crystals. On the inside surface of the membrane electromagnetic interactions exist with the polar salts in solution, which form a kind of fluid layer adherent to the membrane. Crystallization of MgKPO4 occurs solely at this interface, where the Ksp is reached. The salt becomes polarly coupled with the membranes and, together, they favor successive epitaxial crystallization. After several decades the entire arterial wall is “calcified” and arteriosclerosis is in a well advanced stage; myocardial scars and other cardiovascular lesions should originate in a similar way.  相似文献   

17.
Periodic Delta-like 4 expression in developing retinal arteries   总被引:6,自引:0,他引:6  
During vascular development, Notch signalling plays important roles in cell-cell communication and cell fate decisions. We studied expression of Notch 1-4 and its ligand Delta-like 4 (Dll4) in the developing retinal vasculature. Dll4 mRNA is strongly expressed in endothelial cells at the very tips of growing vessels ('tip cells') and also in arteries, where it is expressed in a segmented 'tiger's tail' pattern. This implies that developing retinal arteries contain different types of endothelial cells, Dll4-positive and Dll4-negative. The Dll4-positive stripes do not correspond to any obvious morphological property of the vascular network but correlate to some extent with the distribution of platelet derived growth factor B (PDGF-B) mRNA. However, PDGF-B expression is neither as artery-specific nor as clearly segmented as Dll4. Possible target cells for Dll4 signalling are retinal astrocytes (Notch1 positive), arterial pericytes (Notch3 positive) or arterial endothelial cells themselves (Notch4 positive). However, there is no clear reciprocity of Notch and Dll4 expression that allows identification of the interacting cells. Nevertheless, Dll4 stripes are a novel property of immature arteries, the origin and function of which remain to be explained.  相似文献   

18.
We studied the distribution of intermediate-sized filaments in developing and adult kidneys and renal cell carcinoma (RCC) by indirect immunohistochemistry, using a pan-cytokeratin mouse monoclonal antibody (MAb), chain-specific anti-cytokeratin MAb, and anti-vimentin and anti-desmin MAb, to resolve controversy concerning intermediate-sized filament expression in the kidney. With the pan-cytokeratin MAb, cytokeratin expression was detectable in all stages of nephron development, starting with expression in the renal vesicles, the progenitors of the glomeruli, proximal tubules, Henle's loop, and part of the distal tubules. Using chain-specific anti-cytokeratin MAb, cytokeratin 8 and 18 expression was demonstrated in all developmental structures of the nephron, whereas cytokeratin 19 expression was more complex. None of the nephrogenic blastema cells from which the renal vesicles arise expressed cytokeratins. Transient expression of vimentin and cytokeratin 19 was observed in differentiating collecting ducts and proximal tubule cells at the S-shaped stage of nephron development, respectively. In RCC, cytokeratin expression closely resembled that of the mature proximal tubule, i.e., RCC cells expressed cytokeratins 8 and 18. However, in a subset of RCC additional cytokeratin 19 expression was noted. In addition, all except one RCC showed co-expression of cytokeratins and vimentin.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号