首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mycothiol is a novel thiol produced only by actinomycetes and is the major low-molecular-weight thiol in mycobacteria. Mycothiol was previously shown to be synthesized from 1-D-myo-inosityl-2-amino-2-deoxy-alpha-D-glucopyranoside by ligation with cysteine followed by acetylation. A novel mycothiol-dependent detoxification enzyme, mycothiol conjugate amidase, was recently identified in Mycobacterium smegmatis and shown to have a homolog, Rv1082, in Mycobacterium tuberculosis. In the present study we found that a protein encoded by the M. tuberculosis open reading frame Rv1170, a homolog of Rv1082, possesses weak mycothiol conjugate amidase activity but shows substantial deacetylation activity with 1-D-myo-inosityl-2-acetamido-2-deoxy-alpha-D-glucopyranoside (GlcNAc-Ins), a hypothetical mycothiol biosynthetic precursor. The availability of this protein enabled us to develop an assay for GlcNAc-Ins, which was used to demonstrate that GlcNAc-Ins is present in M. smegmatis at a level about twice that of mycothiol. It was shown that GlcNAc-Ins is absent in mycothiol-deficient mutant strain 49 of M. smegmatis and that this strain can concentrate GlcNAc-Ins from the medium and convert it to mycothiol. This demonstrates that GlcNAc-Ins is a key intermediate in the pathway of mycothiol biosynthesis. Assignment of Rv1170 as the gene coding the deacetylase in the M. tuberculosis genome represents the first identification of a gene of the mycothiol biosynthesis pathway. The presence of a large cellular pool of substrate for this enzyme suggests that it may be important in regulating mycothiol biosynthesis.  相似文献   

2.
Mycothiol (MSH, AcCys-GlcN-Ins) is the major low molecular weight thiol in actinomycetes and is essential for growth of Mycobacterium tuberculosis. MshB, the GlcNAc-Ins deacetylase, is a key enzyme in MSH biosynthesis. MshB from M. tuberculosis was cloned, expressed, purified, and its properties characterized. Values of k(cat) and K(m) for MshB were determined for the biological substrate, GlcNAc-Ins, and several other good substrates. The substrate specificity of MshB was compared to that of M. tuberculosis mycothiol S-conjugate amidase (Mca), a homologous enzyme having weak GlcNAc-Ins deacetylase activity. Both enzymes are metalloamidases with overlapping amidase activity toward mycothiol S-conjugates (AcCySR-GlcN-Ins). The Ins residue and hydrophobic R groups enhance the activity with both MshB and Mca, but changes in the acyl group attached to GlcN have opposite effects on the two enzymes.  相似文献   

3.
Most actinomycetes, including Mycobacterium tuberculosis, do not produce glutathione but make an alternative thiol, mycothiol, which has functions similar to those of glutathione. A key step in mycothiol biosynthesis is the ATP-dependent ligation of Cys to GlcN-Ins catalyzed by MshC to produce Cys-GlcN-Ins, AMP, and PP(i). MshC is essential for growth of M. tuberculosis and is therefore a potential target for drugs directed against tuberculosis. A coupled-enzyme assay for MshC was developed using pyrophosphatase to convert pyrophosphate to phosphate and spectrophotometric detection of the latter via the phosphomolybdate complex with malachite green. The assay was readily adapted for use in a 96-well microtiter plate format. A secondary high-performance liquid chromatography assay measuring Cys-GlcN-Ins production was used to validate potential hits. Preliminary testing on a library of 2,024 compounds predicted to inhibit ATP-dependent enzymes identified many promiscuous and pyrophosphatase inhibitors of MshC and a single validated inhibitor with IC(50) approximately 100 microM.  相似文献   

4.
Mycothiol (MSH) is the major low molecular weight thiol in mycobacteria. Two chemical mutants with low MSH and one with no MSH (strain 49) were produced in Mycobacterium smegmatis mc2155 to assess the role of MSH in mycobacteria. Strain 49 was shown to not produce 1-d-myo-inosityl-2-amino-2-deoxy-alpha-d-glucopyranoside (GlcN-Ins), an intermediate in MSH biosynthesis. Relative to the parent strain, mutant 49 formed colonies more slowly on solid media and was more sensitive to H2O2 and rifampin, but less sensitive to isoniazid. Complementation of mutant 49 with DNA from M. tuberculosis H37Rv partially restored production of GlcN-Ins and MSH, and resistance to H2O2, but largely restored colony growth rate and sensitivity to rifampin and isoniazid. The results indicate that MSH and GlcN-Ins are not essential for in vitro survival of mycobacteria but may play significant roles in determining the sensitivity of mycobacteria to environmental toxins.  相似文献   

5.
N-Acetylglucosaminylinositol (GlcNAc-Ins)-deacetylase (MshB) and mycothiol-S-conjugate amidase (Mca), structurally related amidases present in mycobacteria and other Actinomycetes, are involved in the biosynthesis of mycothiol and in the detoxification of xenobiotics as their mycothiol-S-conjugates, respectively. With substrate analogs of GlcNAc-Ins, MshB showed a marked preference for inositol as the aglycon present in GlcNAc-Ins. The inhibition of MshB and Mca by 10 thioglycosides, 7 cyclohexyl-2-deoxy-2-C-alkylglucosides, and 4 redox cyclers was evaluated. The latter contained plumbagin tethered via 2 to 5 methylene carbons and an amide linkage to phenyl-2-deoxy-2-amino-1-thio-α-d-glucopyranoside. These proved to be the most potent amongst the 21 compounds tested as inhibitors of MshB. Their inhibitory potency varied with the length of the spacer, with the compound with longest spacer being the most effective.  相似文献   

6.
Niu G  Liu G  Tian Y  Tan H 《Metabolic engineering》2006,8(3):183-195
Nikkomycins, a group of peptidyl nucleoside antibiotics, are competitive inhibitors of chitin synthase. The nikkomycin biosynthetic gene cluster has been cloned previously from Streptomyces ansochromogenes. The cluster contains 25 complete ORFs including sanJ. The sanJ gene was inactivated by the insertion of a kanamycin resistance gene and the resulting disruption mutants failed to produce nikkomycins. Moreover, the nikkomycin production was restored by complementation with a single copy of sanJ. The deduced product of sanJ bears striking sequence similarity with enzymes belonging to the adenylate-forming superfamily. sanJ was overexpressed as a His6-tagged fusion protein in Escherichia coli and purified to apparent homogeneity by affinity chromatography. The purified SanJ demonstrated adenylate ligase activity in the presence of picolinate or its analogs (benzoate, nicotinate, 4-methoxybenzoate, 4-hydroxybenzoate), ATP and Mg2+. SanJ was also found to catalyze the conversion of picolinate, benzoate, nicotinate to their corresponding CoA esters and 4-methoxybenzoate, 4-hydroxybenzoate to their respective AMP derivatives in vitro. This was unambiguously shown by using HPLC and electrospray ionization mass spectrometry (ESI-MS) or by comparing the reaction product with an authentic standard of benzoyl-CoA. These results indicated that sanJ encodes an ATP-dependent picolinate-CoA ligase which is essential for nikkomycin biosynthesis.  相似文献   

7.
8.
Patterning of the Drosophila egg requires cooperation between the germline cells and surrounding somatic follicle cells. In order to identify genes involved in follicle cell patterning, we analyzed enhancer trap lines expressed in specific subsets of follicle cells. Through this analysis, we have identified tandem Drosophila genes homologous to CTP: phosphocholine cytidylyltransferase (CCT), the second of three enzymes in the CDP-choline pathway, which is used to synthesize phosphatidylcholine. Drosophila Cct1 is expressed at high levels in three specific subsets of follicle cells, and this expression is regulated, at least in part, by the TGF-beta and Egfr signaling pathways. Mutations in Cct1 result in a number of defects, including a loss of germline stem cell maintenance, mispositioning of the oocyte, and a shortened operculum, suggesting that Cct1 plays multiple roles during oogenesis. In addition, Cct1 mutants display a novel branched ovariole phenotype, demonstrating a requirement for this gene during ovarian morphogenesis. These data provide the first evidence for a specific role for CCT, and thus for phosphatidylcholine, in patterning during development.  相似文献   

9.
10.
The class I ligase was among the first ribozymes to have been isolated from random sequences and represents the catalytic core of several RNA-directed RNA polymerase ribozymes. The ligase is also notable for its catalytic efficiency and structural complexity. Here, we report an improved version of this ribozyme, arising from selection that targeted the kinetics of the chemical step. Compared with the parent ribozyme, the improved ligase achieves a modest increase in rate enhancement under the selective conditions and shows a sharp reduction in [Mg2+] dependence. Analysis of the sequences and kinetics of successful clones suggests which mutations play the greatest part in these improvements. Moreover, backbone and nucleobase interference maps of the parent and improved ligase ribozymes complement the newly solved crystal structure of the improved ligase to identify the functionally significant interactions underlying the catalytic ability and structural complexity of the ligase ribozyme.  相似文献   

11.
12.
A procedure was developed for the purification of inorganic pyrophosphate: fructose-6-phosphate 1-phospho-transferase (PPi-PFK) from potato tubers. The enzyme has the structure alpha 4 beta 4 with a subunit of 68 kDa and a beta subunit of 60 kDa. The structural relationship of this enzyme to other PFKs and to fructose bisphosphatase was examined by immunoprecipitation and immunoblotting. Antibodies to the plant enzyme did not react with E. coli PFK. No cross-reaction was seen among the following enzymes or their antibodies: yeast fructose bisphosphatase; rabbit PFKs A, B, or the enzyme from brain; and the two subunits of the potato PPi-PFK. On the other hand, antibody to E. coli PFK-1 strongly cross-reacts with the 60 kDa polypeptide but not 68 kDa peptide.  相似文献   

13.
Cytoskeletal adaptor proteins serve vital functions in linking the internal cytoskeleton of cells to the cell membrane, particularly at sites of cell-cell and cell-matrix interactions. The importance of these adaptors to the structural integrity of the cell is evident from the number of clinical disease states attributable to defects in these networks. In the heart, defects in the cytoskeletal support system that surrounds and supports the myofibril result in dilated cardiomyopathy and congestive heart failure. In this study, we report the cloning and characterization of a novel cytoskeletal adaptor, obscurin-like 1 (OBSL1), which is closely related to obscurin, a giant structural protein required for sarcomere assembly. Multiple isoforms arise from alternative splicing, ranging in predicted molecular mass from 130 to 230 kDa. OBSL1 is located on human chromosome 2q35 within 100 kb of SPEG, another gene related to obscurin. It is expressed in a broad range of tissues and localizes to the intercalated discs, to the perinuclear region, and overlying the Z lines and M bands of adult rat cardiac myocytes. Further characterization of this novel cytoskeletal linker will have important implications for understanding the physical interactions that stabilize and support cell-matrix, cell-cell, and intracellular cytoskeletal connections.  相似文献   

14.
15.
Schizosaccharomyces pombe Mop1-Mcs2 is related to mammalian CAK.   总被引:2,自引:2,他引:2       下载免费PDF全文
The cyclin-dependent kinase (CDK)-activating kinase, CAK, from mammals and amphibians consists of MO15/CDK7 and cyclin H, a complex which has been identified also as a RNA polymerase II C-terminal domain (CTD) kinase. While the Schizosaccharomyces pombe cdc2 gene product also requires an activating phosphorylation, the enzyme responsible has not been identified. We have isolated an essential S.pombe gene, mop1, whose product is closely related to MO15 and to Saccharomyces cerevisiae Kin28. The functional similarity of Mop1 and MO15 is reflected in the ability of MO15 to rescue a mop1 null allele. This suggests that Mop1 would be a CDK, and indeed Mop1 associates with a previously characterized cyclin H-related cyclin Mcs2 of S.pombe. Also, Mop1 and Mcs2 can associate with the heterologous partners human cyclin H and MO15, respectively. Moreover, the rescue of a temperature-sensitive mcs2 strain by expression of mop1+ demonstrates a genetic interaction between mop1 and mcs2. In a functional assay, immunoprecipitated Mop1-Mcs2 acts both as an RNA polymerase II CTD kinase and as a CAK. The CAK activity of Mop1-Mcs2 distinguishes it from the related CDK-cyclin pair Kin28-Ccl1 from S.cerevisiae, and supports the notion that Mop1-Mcs2 may represent a homolog of MO15-cyclin H in S.pombe with apparent dual roles as a RNA polymerase CTD kinase and as a CAK.  相似文献   

16.
17.
A number of bacterial toxins have evolved diverse strategies for crossing membrane barriers in order to reach their substrates in the mammalian cytosol. Recent studies show that this property can be exploited for the delivery of fused antigens into the major histocompatibility complex class I-restricted presentation pathway, with the goal of eliciting a specific immune response. Here we discuss the peculiarities of the trafficking pathways of a variety of toxins, and how these may allow the toxins to be used as delivery vehicles for therapeutic and diagnostic purposes.  相似文献   

18.
Two intermediate stages in cobalamin biosynthesis, amidation of carboxylic acid groups in the corrin ring and (R)-1-amino-2-propanol attachment at propionic acid position f, have been studied using cell-free extracts from the obligate anaerobe Clostridium tetanomorphum. The preparation of an incomplete corrinoid, probably cobinic acid-a,c,d,e,g-pentaamide, as an in vitro amidation substrate was accomplished via mild acid hydrolysis of cobinamide. Weak, but reproducible activities for both amidation and (R)-1-amino-2-propanol attachment were found in crude, nucleic acid-free and DE-52 column-purified protein fractions. The amidation reaction was glutamine-dependent in crude fractions, but became ammonium ion-dependent in more purified fractions. Significant problems encountered were (a) the weak and unstable character of both enzyme activities, and (b) the irreversible changes in the visible spectra of the incomplete corrinoids employed as substrates caused by use of thiol-reducing agents in the buffers and assays.  相似文献   

19.
Pseudomonas aeruginosa produces three types of bacteriocins: R-, F- and S-type pyocins. The S-type pyocin is a colicin-like protein, whereas the R-type pyocin resembles a contractile but non-flexible tail structure of bacteriophage, and the F-type a flexible but non-contractile one. As genetically related phages exist for each type, these pyocins have been thought to be variations of defective phage. In the present study, the nucleotide sequence of R2 pyocin genes, along with those for F2 pyocin, which are located downstream of the R2 gene cluster on the chromosome of P. aeruginosa PAO1, was analysed in order to elucidate the relationship between the pyocins and bacteriophages. The results clearly demonstrated that the R-type pyocin is derived from a common ancestral origin with P2 phage and the F-type from lambda phage. This notion was supported by identification of a lysis gene cassette similar to those for bacteriophages. The gene organization of the R2 and F2 pyocin gene cluster, however, suggested that both pyocins are not simple defective phages, but are phage tails that have been evolutionarily specialized as bacteriocins. A systematic polymerase chain reaction (PCR) analysis of P. aeruginosa strains that produce various subtypes of R and F pyocins revealed that the genes for every subtype are located between trpE and trpG in the same or very similar gene organization as for R2 and F2 pyocins, but with alterations in genes that determine the receptor specificity.  相似文献   

20.
We studied molecular and functional properties of Arabidopsis phosphomannose isomerase isoenzymes (PMI1 and PMI2) that catalyze reversible isomerization between D-fructose 6-phosphate and D-mannose 6-phosphate (Man-6P). The apparent K(m) and V(max) values for Man-6P of purified recombinant PMI1 were 41.3+/-4.2 microm and 1.89 micromol/min/mg protein, respectively, whereas those of purified recombinant PMI2 were 372+/-13 microm and 22.5 micromol/min/mg protein, respectively. Both PMI1 and PMI2 were inhibited by incubation with EDTA, Zn(2+), Cd(2+), and L-ascorbic acid (AsA). Arabidopsis PMI1 protein was constitutively expressed in both vegetative and reproductive organs under normal growth conditions, whereas the PMI2 protein was not expressed in any organs under light. The induction of PMI1 expression and an increase in the AsA level were observed in leaves under continuous light, whereas the induction of PMI2 expression and a decrease in the AsA level were observed under long term darkness. PMI1 showed a diurnal expression pattern in parallel with the total PMI activity and the total AsA content in leaves. Moreover, a reduction of PMI1 expression through RNA interference resulted in a substantial decrease in the total AsA content of leaves of knockdown PMI1 plants, whereas the complete inhibition of PMI2 expression did not affect the total AsA levels in leaves of knock-out PMI2 plants. Consequently, this study improves our understanding of the molecular and functional properties of Arabidopsis PMI isoenzymes and provides genetic evidence of the involvement of PMI1, but not PMI2, in the biosynthesis of AsA in Arabidopsis plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号