首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The defect causing Huntington disease (HD) has been mapped to 4p16.3, distal to the DNA marker D4S10. Subsequently, additional polymorphic markers closer to the HD gene have been isolated, which has led to the establishment of predictive testing programs for individuals at risk for HD. Approximately 17% of persons presenting to the Canadian collaborative study for predictive testing for HD have not received any modification of risk, in part because of limited informativeness of currently available DNA markers. Therefore, more highly polymorphic DNA markers are needed, which will further increase the accuracy and availability of predictive testing, specifically for families with complex or incomplete pedigree structures. In addition, new markers are urgently needed in order to refine the breakpoints in the few known recombinant HD chromosomes, which could allow a more accurate localization of the HD gene within 4p16.3 and, therefore, accelerate the cloning of the disease gene. In this study we present the identification and characterization of nine new polymorphic DNA markers, including three markers which detect highly informative multiallelic VNTR-like polymorphisms with PIC values of up to .84. These markers have been isolated from a cloned region of DNA which has been previously mapped approximately 1,000 kb from the 4p telomere.  相似文献   

2.
The major limitation in performing predictive testing for Huntington disease (HD) is the unavailability of DNA from crucial family members. In our program approximately 20% (36/183) of persons have been excluded from predictive testing because of this reason. The major aim of this study was to examine whether data derived from linkage disequilibrium could modify risk analysis for persons at risk for HD. As a first step, we assessed whether the previously reported linkage disequilibrium between alleles recognized by probe pBS674E-D at locus D4S95 remained significant in a much larger data set. A total of 1,150 chromosomes from 622 individuals--200 affected and 422 unaffected--from 118 families were assessed. Significant haplotype association was detected with AccI and MboI RFLPs at the locus D4S95, with all the families (P = .00003), as well as for a subset from the United Kingdom (P = .0037). Data derived from linkage disequilibrium studies using D4S95 modifies the risk for HD, especially in persons of U.K. descent. Utilization of this approach for risk modification of HD awaits both validation of these data and additional information concerning ethnic-specific alleles at the D4S95 locus.  相似文献   

3.
The question about heterogeneity of Huntington disease (HD) at the DNA level can be approached by analyzing the RFLP haplotypes formed by several RFLP loci of the diseased chromosome in different populations. In genetically isolated populations such as Finland, it is further possible to use this approach to test the hypothesis of a single mutation enriched in this population demonstrating an exceptionally low prevalence of HD. In this study covering 70% of all diagnosed HD cases in Finland, linkage disequilibrium of RFLP haplotypes of D4S10 and D4S43 loci polymorphisms was found. This phenomenon, not so far reported in any other population, could support the hypothesis of one ancestor HD mutation in the Finnish population. Despite the lower heterozygosity obtained with some RFLP markers, the proportion of individuals receiving informative DNA test results did not significantly differ from that reported in more mixed populations. In one HD family we established a recombination event between HD and the D4S43 locus, an event which can be highly useful in the more precise mapping of the HD gene.  相似文献   

4.
Significant linkage disequilibrium has been found between the Huntington disease (HD) gene and DNA markers located around D4S95 and D4S98. The linkage-disequilibrium studies favor the proximal location of the HD gene, in contrast to the conflicting results of recombination analyses. We have analyzed 45 Dutch HD families with 19 DNA markers and have calculated the strength of linkage disequilibrium. Highly significant linkage disequilibrium has been detected with D4S95, consistent with the studies in other populations. In contrast with most other studies, however, the area of linkage disequilibrium extends from D4S10 proximally to D4S95, covering 1,100 kb. These results confirm that the HD gene most likely maps near D4S95.  相似文献   

5.
The Huntington disease (HD) mutation has been localized to human chromosome 4p16, in a 6-Mb region between the D4S10 locus and the 4p telomere. In a report by Robbins et al., a family was identified in which an affected individual failed to inherit three alleles within the 6-Mb region originating from the parental HD chromosome. To explain these results, it was suggested that the HD locus (HD) lies close to the telomere and that a recombination event took place between HD and the most telomeric marker examined, D4S90. As a test of this telomere hypothesis, we examined six members of this family, five of whom are affected with HD, for the segregation of 12 polymorphic markers from 4p16, including D4S169, which lies within 80 kb of the 4p telomere. We separated, in somatic cell hybrids, the chromosomes 4 from each family member, to determine the phase of marker alleles on each chromosome. We excluded nonpaternity by performing DNA fingerprint analyses on all six family members, and we found no evidence for chromosomal rearrangements when we used high-resolution karyotype analysis. We found that two affected siblings, including one of the patients originally described by Robbins et al., inherited alleles from the non-HD chromosome 4 of their affected parents, throughout the 6-Mb region. We found that a third affected sibling, also studied by Robbins et al., inherited alleles from the HD chromosome 4 of the affected parent, throughout the 6-Mb region. Finally, we found that a fourth sibling, who is likely affected with HD, has both a recombination event within the 6-Mb region and an additional recombination event in a more centromeric region of the short arm of chromosome 4. Our results argue against a telomeric location for HD and suggest that the HD mutation in this family is either associated with DNA predisposed to double recombination and/or gene conversion within the 6-Mb region or is in a gene that is outside this region and that is different from that mutated in most other families with HD.  相似文献   

6.
A DNA probe (D4S95) that detects a variable number of tandem repeats and a single-site-variation polymorphism after digestion with a single restriction enzyme, AccI, has previously been described. The order of this probe relative to the gene for Huntington disease (HD) and other previously described markers has not been established. Analysis of 24 affected families with HD has shown that D4S95 is in tight linkage with the gene causing HD, with a maximal Lod score of 12.489 at a theta of .03. D4S90 is a probe which maps to 4p16.3, telomeric to D4S95, and detects polymorphisms with HincII and other enzymes. In one affected person, recombination has occurred between D4S10 and HD, between D4S95 and HD, and in all likelihood also between D4S90 and HD, which strongly suggests that the gene for HD is telomeric to all these DNA probes. This suggests that the gene causing HD is located in the most distal region of the short arm of chromosome 4, flanked by D4S90 and the telomere, and supports the locus order D4S10-D4S95-D4S90-HD-telomere. D4S95 is a most useful DNA marker for predictive testing programs, while D4S90 will serve as a useful starting point for identifying DNA fragments closer to the gene for HD.  相似文献   

7.
The gene for Huntington disease (HD) has been localized close to the telomere on the short arm of chromosome 4. However, refined mapping using recombinant HD chromosomes has resulted in conflicting findings and mutually exclusive candidate regions. Previously reported significant nonrandom allelic association between D4S95 and HD provided support for a more proximal location for the defective gene. In this paper, we have analyzed 17 markers, spanning approximately 6 Mb of DNA distal to locus D4S62, for nonrandom association to HD. We confirm the previous findings of nonrandom allelic association between D4S95 and HD. In addition, we provide new data showing significant nonrandom association between HD and 3 markers at D4S133 and D4S228, which are approximately 3 Mb telomeric to D4S95.  相似文献   

8.
Proceed with Care: Direct Predictive Testing for Huntington Disease   总被引:7,自引:1,他引:6       下载免费PDF全文
The cloning of the Huntington disease (HD) gene allows highly accurate predictive testing using direct analysis of the CAG repeat. This new test provides results with almost complete certainty but poses unique counseling issues related to direct testing for an adult-onset disease. These include testing individuals who are at 25% risk, without the need for blood from a 50% at risk relative; the assessment of symptomatic individuals; the need for ongoing counseling despite simplification of laboratory procedures; and counseling of persons from families who represent a new mutation for HD. This paper describes protocols for direct predictive testing for adult and prenatal assessment, on the basis of the experience of the Canadian Collaborative Study on Predictive Testing (CCSPT). Over the past 8 years, we have provided >400 results by using linked markers and, more recently, 416 results by using direct assessment of CAG expansion in the HD gene. The vast majority (86%) of requests for direct predictive testing have been from persons who have not previously received results by using linked markers. Despite the ability to now directly assess for the mutation associated with HD, we still recommend assessment of DNA from an affected relative, as this may significantly enhance the accuracy of information to be provided to the at-risk individual. Distance from a genetics center has previously limited the availability of testing, and therefore we have developed approaches to providing predictive testing in the patient's own community.  相似文献   

9.
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder of late onset, characterized by progressive motor disturbance, psychological manifestations, and intellectual deterioration. The HD gene has been genetically mapped by linkage to the DNA marker D4S10, but the exact physical location of the HD defect has remained uncertain. To delineate critical recombination events revealing the physical position of the HD gene, we have identified restriction fragment length polymorphisms for two recently mapped chromosome 4 loci, RAF2 and D4S62, and determined the pattern of segregation of these markers in both reference and HD pedigrees. Multipoint linkage analysis of the new markers with D4S10 and HD establishes that the HD gene is located in a very small physical region at the tip of the chromosome, bordered by D4S10 and the telomere. A crossover within the D4S10 locus orients this segment on the chromosome, providing the necessary information for efficient application of directional cloning strategies for progressing toward, and eventually isolating, the HD gene.  相似文献   

10.
To facilitate identification of additional DNA markers near and on opposite sides of the Huntington disease (HD) gene, we developed a panel of somatic-cell hybrids that allows accurate subregional mapping of DNA fragments in the distal portion of 4p. By means of the hybrid-cell mapping panel and a library of DNA fragments enriched for sequences from the terminal one-third of the short arm of chromosome 4, 105 DNA fragments were mapped to six different physical regions within 4p15-4pter. Four polymorphic DNA fragments of particular interest were identified, at least three of which are distal to the HD-linked D4S10 (G8) locus, a region of 4p previously devoid of DNA markers. Since the HD gene has also recently been shown to be distal to G8, these newly identified DNA markers are in the direction of the HD gene from G8, and one or more of them may be on the opposite side of HD from G8.  相似文献   

11.
The first predictive testing for Huntington disease (HD) was based on analysis of linked polymorphic DNA markers to estimate the likelihood of inheriting the mutation for HD. Limits to accuracy included recombination between the DNA markers and the mutation, pedigree structure, and whether DNA samples were available from family members. With direct tests for the HD mutation, we have assessed the accuracy of results obtained by linkage approaches when requested to do so by the test individuals. For six such individuals, there was significant disparity between the tests. Three went from a decreased risk to an increased risk, while in another three the risk was decreased. Knowledge of the potential reasons for these changes in results and impact of these risk reversals on both patients and the counseling team can assist in the development of strategies for the prevention and, where necessary, management of a risk reversal in any predictive testing program.  相似文献   

12.
Summary Huntington disease (HD) is found at exceptionally low frequency in the Finnish population. In this population, linkage disequilibrium was earlier established with markers from the D4S10 and D4S43 loci. We now report a continuation to the restriction fragment length polymorphism haplotype analysis, in combination with a genealogical study of all the Finnish HD families. When the HD pedigrees were systematically traced to the 18th century, only one consanguinity was found, and a high percentage (28%) of the families had foreign ancestors. The majority of the Finnish ancestors were localized to border regions or trade centers of the country following the old postal routes. The observed high risk haplotypes formed with markers from the D4S10 and D4S43 loci were evenly distributed among the HD families in different geographical locations. Consequently, the HD gene(s) has most probably arrived in Finland on several occasions via foreign immigrants during the last few centuries.  相似文献   

13.
Comparative mapping in man and mouse has revealed frequent conservation of chromosomal segments, offering a potential approach to human disease genes via their murine homologs. Using DNA markers near the Huntington disease gene on the short arm of chromosome 4, we defined a conserved linkage group on mouse chromosome 5. Linkage analyses using recombinant inbred strains, a standard outcross, and an interspecific backcross were used to assign homologs for five human loci, D4S43, D4S62, QDPR, D4S76, and D4S80, to chromosome 5 and to determine their relationships with previously mapped markers for this autosome. The relative order of the conserved loci was preserved in a linkage group that spanned 13% recombination in the interspecific backcross analysis. The most proximal of the conserved markers on the mouse map, D4S43h, showed no recombination with Emv-1, an endogenous ecotropic virus, in 84 outcross progeny and 19 recombinant inbred strains. Hx, a dominant mutation that causes deformities in limb development, maps approximately 2 cM proximal to Emv-1. Since the human D4S43 locus is less than 1 cM proximal to HD near the telomere of chromosome 4, the murine counterpart of the HD gene might lie between Hx and Emv-1 or D4S43h. Cloning of the region between these markers could generate new probes for conserved human sequences in the vicinity of the HD gene or possibly candidates for the murine counterpart of this human disease locus.  相似文献   

14.
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor disturbance, cognitive loss, and psychiatric manifestations. The disease is associated with a CAG trinucleotide-repeat expansion in the Huntington gene (IT15) on chromosome 4p16.3. One family with a history of HD was referred to us initially for predictive testing using linkage analysis. However, the chromosome 4p region was completely excluded by polymorphic markers, and later no CAG-repeat expansion in the HD gene was detected. To map the disease trait segregating in this family, whole-genome screening with highly polymorphic dinucleotide-, trinucleotide-, and tetranucleotide-repeat DNA markers was performed. A positive LOD score of 3.01 was obtained for the marker D20S482 on chromosome 20p, by two-point LOD-score analysis with the MLINK program. Haplotype analysis indicated that the gene responsible for the disease is likely located in a 2.7-cM region between the markers D20S193 and D20S895. Candidate genes from the mapping region were screened for mutations.  相似文献   

15.
Recombination events suggest potential sites for the Huntington's disease gene   总被引:17,自引:0,他引:17  
The Huntington's disease gene (HD) maps distal to the D4S10 marker in the terminal 4p16.3 subband of chromosome 4. Directed cloning has provided several DNA segments that have been grouped into three clusters on a physical map of approximately 5 X 10(6) bp in 4p16.3. We have typed RFLPs in both reference and HD pedigrees to produce a fine-structure genetic map that establishes the relative order of the clusters and further narrows the target area containing the HD gene. Despite the large number of meiotic events examined, the HD gene cannot be positioned relative to the most distal cluster. One recombination event with HD suggests that the terminal-most markers flank the disease gene; two others favor a telomeric location for the defect. Efforts to isolate the HD gene must be divided between these two distinct intervals until additional genetic data resolve the apparent contradiction in localization.  相似文献   

16.
Allele frequencies of 14 different restriction fragment length polymorphisms from 12 DNA markers within the Huntington disease (HD) region were evaluated in the German population. No significant differences from published data of allele frequencies from chromosomes of Caucasian ancestry were found. The analysis of eight DNA polymorphisms in 87 HD families of German origin revealed significant non-random association with the HD locus and the D4S95 locus (p674/AccI/MboI), a result that is consistent with all other published studies. These results are confirmed by the fact that the HD gene maps to this region.  相似文献   

17.
Genetic linkage studies have mapped Huntington's disease (HD) to the distal portion of the short arm of chromosome 4 (4p16.3), 4 cM distal to D4S10 (G8). To date, no definite flanking marker has been identified. A new DNA marker, D4S90 (D5); which maps to the distal region of 4p16.3, is described. The marker was used in a genetic linkage study in the CEPH reference families with seven other markers at 4p16. The study, together with knowledge of the physical map of the region, places D4S90 as the most distal marker, 6 cM from D4S10. A provisional linkage study with HD gave a maximum lod score of 2.14 at a theta of 0.00 and no evidence of linkage disequilibrium. As D4S90 appears to be located terminally, it should play an important role in the accurate mapping and cloning of the HD gene.  相似文献   

18.
The Huntington disease (HD) gene has been mapped 4 cM distal to D4S10 within the telomeric chromosome band, 4p16.3. The published physical map of this region extends from D4S10 to the telomere but contains two gaps of unknown size. Recombination events have been used to position the HD mutation with respect to genetic markers within this region, and one such event places the gene proximal to D4S168, excluding the distal gap as a possible location for the defect. One previously published recombination event appeared to have excluded the proximal gap. We have reassessed this event and have moved the proximal boundary for the HD candidate region centromeric to the gap within a "hot spot" for recombination between D4S10 and D4S125. We have closed the proximal gap and report here the complete physical map spanning the HD candidate region from D4S10 to D4S168, the maximum size of which can now be placed accurately at 2.5 Mb.  相似文献   

19.
Prior to the implementation of predictive-testing programs for Huntington disease (HD), significant concern was raised concerning the likelihood of catastrophic events (CEs), particularly in those persons receiving an increased-risk result. We have investigated the frequency of CEs-that is, suicide, suicide attempt, and psychiatric hospitalization-after an HD predictive-testing result, through questionnaires sent to predictive-testing centers worldwide. A total of 44 persons (0.97%) in a cohort of 4,527 test participants had a CE: 5 successful suicides, 21 suicide attempts, and 18 hospitalizations for psychiatric reasons. All persons committing suicide had signs of HD, whereas 11 (52.4%) of 21 persons attempting suicide and 8 (44.4%) of 18 who had a psychiatric hospitalization were symptomatic. A total of 11 (84.6%) of 13 asymptomatic persons who experienced a CE during the first year after HD predictive testing received an increased-risk result. Factors associated with an increased risk of a CE included (a) a psychiatric history 相似文献   

20.
The dominant gene defect in Huntington's disease (HD) is linked to the DNA marker D4S10, near the telomere of the chromosome 4 short arm. Two other markers, D4S43 and D4S95, are closer, but still proximal to the HD gene in 4p16.3. We have characterized a new locus, D4S114, identified by cloning the end of a NotI fragment resolved by pulsed-field gel electrophoresis. D4S114 was localized distal to D4S43 and D4S95 by both physical and genetic mapping techniques. The "end"-clone overlaps a previously isolated NotI "linking" clone, and is within 150 kb of a second "linking" clone defining D4S113. Restriction fragment length polymorphisms for D4S113 and D4S114, one of which is identical to a SacI polymorphism detected by the anonymous probe pBS731B-C (D4S98), were typed for key crossovers in HD and reference pedigrees. The data support the locus order D4S10-(D4S43, D4S95)-D4S98/S114/S113-HD-telomere. The D4S98/S114/S113 cluster therefore represents the nearest cloned sequences to HD, and provides a valuable new point for launching directional cloning strategies to isolate and characterize this disease gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号