首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
Summary The crystalline parasporal inclusions (crystals) of Bacillus thuringiensis israelensis (Bti), which are specifically toxic to mosquito and black fly larvae, contain three main polypeptides of 28 kDa, 68 kDa and 130 kDa. The genes encoding the 28 kDa protein and the 130 kDa protein have been cloned from a large plasmid of Bti. Escherichiacoli recombinant clones containing the 130 kDa protein gene were highly active against larvae of Aedes aegypti and Culex pipiens, while B. subtilis recombinant cells containing the 28 kDa protein gene were haemolytic for sheep red blood cells. A fragment of the Bti plasmid which is partially homologous to the 130 kDa protein gene was also isolated; it probably corresponds to part of a second type of mosquitocidal toxin gene. Furthermore, restriction enzyme analysis suggested that the 130 kDa protein gene is located on the same Bti EcoRI fragment as another kind of Bti mosquitocidal protein gene cloned by Thorne et al. (1986). Hybridization experiments conducted with the 28 kDa protein gene and the 230 kDa protein gene showed that these two Bti genes are probably present in the plasmid DNA of B. thuringiensis subsp. morrisoni (PG14), which is also highly active against mosquito larvae.  相似文献   

2.
The location of 130kd mosquitocidal protein gene of Bti 4Q5 strain on its 75Md plasmid was confirmed by southern hybridization using a 18-base oligonucleotide probe. The crystal protein containing the component of 130kd toxic protein was purified. The crystal protein exhibiting the mosquitocidal activity against larvae of Aedes aegypti was shown by bioassay. The purified 75Md plasmid DNA of Bti 4Q5 strain was completely digested with HindIII restriction enzyme, ligated with the vector pUC18 and transformed into the recipient cells of E. coli TG1. From Apr transformants, four clones with HindIII restriction fragment inserts highly homologous to the 18-base oligonucleotide probe were obtained by in situ hybridization and southern hybridization. The 5.2kb HindIII restriction fragment insert was obtained in clone pFH2 and clone pFH4, and 2.3kb HindIII restriction fragment insert in clone pFH1 and pFH3. For pFH2 and pFH4, the 5.2kb fragment was inserted in pUC18 in opposite orientation. It contained 130kd mosquitocidal protein gene (type I) identified by restriction enzyme map analysis. The 2.3kb HindIII fragment insert in other two clones (pFH1 and pFH3) harbored a part of the type II mosquitocidal protein gene which can be used as a probe for cloning of the type II mosquitocidal protein gene.  相似文献   

3.
4.
5.
The nucleotide sequence of pVB131 containing the gene coding for a 130-kDa Bacillus thuringiensis israelensis (B.t.isr) mosquitocidal protein was determined. The pVB131 plasmid was constructed by Sekar and Carlton [Gene 33 (1985) 151-158]. Our sequencing revealed only one open reading frame large enough to code for a protein of 130 kDa. The translation start site was determined by sequencing the protein isolated from B.t.isr. The amino acid sequence of the protein was deduced from the nucleotide sequence, and its Mr was determined as 128,505. Immunological and biochemical analyses of B.t.isr mosquitocidal proteins indicated that the 130-kDa protein coded by pVB131 was indeed expressed in B.t.isr. Comparing the peptide sequence of the 130-kDa B.t.isr toxin with the sequences of other B.t. toxins having activities specific to lepidopteran species showed that several domains were highly homologous. This suggests that they are evolutionarily related to each other, and in the evolutionary process the sequences in the homologous domains that are important to the insecticidal activity have been conserved.  相似文献   

6.
Proteins with molecular masses of 36 and 34 kDa (Bti36 and Bti34) were isolated from entomocidal crystals formed by Bacillus thuringiensis ssp. israelensis cells. The samples of Bti36 contained the admixture of a protein with a molecular mass of 33 kDa (Bti33), apparently a product of proteolysis of Bti36. These 3 proteins are significantly different in N-terminal sequences from known delta-endotoxins of B. thuringiensis and show antibacterial activity toward Micrococcus luteus. The combination of Bti36 and Bti33 also suppresses the growth of some other microorganisms including Streptomyces chrysomallus. The effects of the mixture of Bti36 and Bti33 on the M. luteus cell surface and on the surface of S. chrysomallus cells and exospores are similar, but they are different from the effect of endotoxin Cry11A on micrococcal cells.  相似文献   

7.
We present evidence that Anabaena PCC7120 (A.7120) strains expressing mosquitocidal toxin genes from Bacillus thuringiensis subsp. israelensis (Bti) have a strong potential for biotechnological application. Characterization of two 4-year-old recombinant A.7120 clones constructed previously in our laboratory [clone 7 and clone 11, each carrying three Bti genes (cry4Aa, cry11Aa, and p20)] revealed three facts. First, the Bti genes were stable in A.7120 even in the absence of antibiotic selection when the genes were integrated in the chromosome (in clone 11); and the genes were also stable as plasmid-borne constructs (in clone 7), provided the cultures were maintained under continued selection. Second, clone 7 (kept under selection) and clone 11 (either kept or not kept under selection) continued to be mosquitocidal through 4 years of culture. Third, growth of the recombinant clones was comparable to the wild type under optimal growth conditions, indicating that growth was not compromised by the expression of toxin genes. These results clear the way for the development of mass production techniques for A.7120 strains expressing Bti toxin genes.  相似文献   

8.
Optimization of chicken feather (CF) based culture medium for the production of Bacillus thuringiensis subsp. israelensis (Bti) biomass in combination with the agro industrial by-product (coconut cake, CC) and manganese chloride (MnCl2) has been evaluated. The biomass yield of Bti spore/crystal toxin was highest (12.06 g/L) from the test medium (CF+CC+MnCl2) compared to the reference medium (Luria Bertani, LB). Toxicity assay with Bti produced from the test medium against mosquito vectors (Culex quinquefasciatus, Anopheles stephensi and Aedes aegypti) was also satisfactory and results were comparable with bacteria produced from LB. The results suggest that Bti can be produced to the maximum extent possible as a potential mosquitocidal activity as suggested by the test medium (CF+CC+MnCl2).  相似文献   

9.
The mosquitocidal bacterium Bacillus thuringiensis subsp. israelensis (Bti) produces four major endotoxin proteins, Cry4A, Cry4B, Cry11A, and Cyt1A, and has toxicity in the range of many synthetic chemical insecticides. Cry11B, which occurs naturally in B. thuringiensis subsp. jegathesan, is a close relative of Cry11A, but is approximately 10-fold as toxic to Culex quinquefasciatus. To determine whether the addition of Cry11B to Bti would improve its toxicity, we produced this protein in Bti. High levels of Cry11B synthesis were obtained by expression of the cry11B gene under the control of cyt1A promoters and the STAB-SD sequence. This construct was cloned into the shuttle vector pHT3101, yielding the derivative plasmid pPFT11Bs, which was then transformed by electroporation into acrystalliferous (4Q7) and crystalliferous (IPS-82) strains of Bti. Synthesis of Cry11B in Bti 4Q7 produced crystals approximately 50% larger than those produced with its natural promoters without STAB-SD. However, less Cry11B was produced per unit culture medium with this construct than with the wild-type construct, apparently because the latter construct produced more cells per unit medium. Nevertheless, the Bti IPS-82 strain that produced Cry11B with pPFT11Bs was twice as toxic as the parental IPS-82 strain (LC(50) = 1.4 ng/ml versus 3.3 ng/ml, respectively) to fourth instars of C. quinquefasciatus. Against fourth instars of Aedes aegypti, no statistically significant difference between parental Bti IPS-82 (LC(50) = 4.7 ng/ml) and the Bti IPS-82 recombinant producing Cry11B (LC(50) = 3.5 ng/ml) was found in toxicity.  相似文献   

10.
To delineate the mosquitocidal regions of the ISRH3 (CryIVB) and ISRH4 (CryIVA) proteins, which are two of the mosquitocidal 130-kDa proteins contained in the crystalline protein bodies (CPBs) of Bacillus thuringiensis var. israelensis (BTI), a deletion analysis of these protein genes has been done. Based on the evidence that each 130-kDa protein had two mosquitocidal regions, N-terminal and C-terminal ones, and these two regions shared a common part in the center of the 130-kDa proteins, deleted genes on this region were constructed. As the protein products which lacked the central region had reduced activities, the central region could be important for the mosquitocidal activity. The mosquitocidal and non-mosquitocidal truncated gene products of 130-kDa protein genes were also applied to a cultured lepidopteran cell line, TN-368. The mosquitocidal proteins caused the swelling and disruption of the cells in spite of the insecticidal specificity of CPBs of BTI, but the non-mosquitocidal proteins did not. Therefore, TN-368 cells were sensitive to the mosquitocidal fragments of 130-kDa proteins of BTI under the assay conditions used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号