首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetic and immunologic properties of phenylalanine hydroxylase of adult rat liver were compared to the properties of the similar enzyme present in cultured H4-II-E-C3 hepatoma cells. The enzymes from the two sources could not be distinguished by the Km values for either phenylalanine or 6,7-dimethyltetrahydropterin. Analysis by double immunodiffusion showed that phenylalanine hydroxylase from the two sources had identical immunologic determinants, but immunotitrations revealed a small but significant difference between the enzyme of the normal adult rat liver and the enzyme of cultured hepatoma cells. The results of double immunodiffusion and immunotitration experiments indicated also that the increased levels of phenylalanine hydroxylase seen in the hepatoma cells grown in the presence of hydrocortisone resulted from the accumulation of enzyme protein, but it could not be decided whether this accumulation resulted from an increased rate of synthesis or decreased rate of degradation.  相似文献   

2.
We have investigated the p-chlorophenylalanine-dependent loss of phenylalanine hydroxylase activity in cultured hepatoma cells. The similarity of the effect of p-chlorophenylalanine on phenylalanine hydroxylase in the hepatoma cells and that reported from studies in vivo indicates that the loss of phenylalanine hydroxylase activity is due to a direct interaction of the amino acid analogue with the liver. We can find no evidence that the loss of phenylalanine hydroxylase activity is due to: a direct inactivation of the hydroxylase by p-chlorophenylalanine or an inhibitor produced by p-chlorophenylalanine treatment; an effect similar to that of p-fluorophenylalanine; or leakage of enzyme from the cells during p-chlorophenylalanine treatment. The data presented indicate: (a) the p-chlorophenylalanine effect is rather specific for phenylalanine hydroxylase; (b) following p-chlorophenylalanine removal, new protein synthesis is necessary for restoration of the hydroxylase activity; (c) the rate of loss of phenylalanine hydroxylase activity after the addition of p-chlorophenylalanine is much faster than the rate of restoration of the hydroxylase activity after removal of p-chlorophenylalanine; (d) even in the presence of p-chlorophenylalanine, hydrocortisone greatly stimulates the hydroxylase activity; (e) the cell density-dependent increase of phenylalanine hydroxylase activity is blocked by p-chlorophenylalanine. A discussion of the possible mechanisms of p-chlorophenylalanine-dependent loss of phenylalanine hydroxylase is presented. To measure very low leanine-dependent loss of phenylalanine hydroxylase is presented. To measure very low levels of phenylalanine hydroxylase activity, a new procedure, based on isotope dilution, was developed for isolating the tyrosine formed during the enzymatic reaction.  相似文献   

3.
The mechanism by which p-chlorophenylalanine specifically reduces phenylalanine hydroxylase activity in rat liver in vivo and in Reuber H4 hepatoma cells in culture has been investigated. Chromatography on hydroxylapatite of liver extract from rats injected with p-chlorophenylalanine showed that the compound differentially affected the three normal phenylalanine hydroxylase isoenzymes (I, II, and III); isoenzymes II and III were completely absent after the treatment, but isoenzyme I was only reduced in quantity compared with normal adult rats. Normal Reuber H4 cells only possess isoenzyme I; treatment with p-chlorophenylalanine yielded a reduced level of enzyme activity which appeared to be noraml isoenzyme I by both chromatographic and kinetic criteria. There is evidence, based on immunochemical techniques, that cultures grown in the presence of p-chlorophenylalanine have significantly reduced levels of phenylalanine hydroxylase antigen, and that p-chlorophenylalanine inactivates phenylalanine hydroxylase at or near the time of enzyme synthesis. The bulk of enzyme synthesized prior to the addition of the compound appears unaffected by it. There is no indication that protein synthesis itself is affected by p-chlorophenylalanine. In addition, p-chlorophenylacetate was found to inactivate phenylalanine hydroxylase in an apparently identical manner with p-chlorophenylalanine, which almost certainly eliminates from consideration any mechanism of inactivation specifically requiring an amino acid. Finally, effects of cycloheximide and chlorophenylalanine were compared. Taken together, the data lead to two possible models for the inactivation of the enzyme. The model most consistent with all data requires (predicts) the existence of a proenzyme form of phenylalanine hydroxylase which can be specifically inactivated by p-chlorophenylalanine.  相似文献   

4.
Continued high levels of phenylalanine hydroxylase in cultured H4-II-E-C3 rat hepatoma cells require either serum or glucocorticoids in the culture medium. Upon withdrawal of serum, cellular phenylalanine hydroxylase levels decay exponentially with a half-life of 22 hours for about 60 hours, after which time a low, constant enzyme content persists for at least 96 hours. This decline of phenylalanine hydroxylase is fully reversible; normal enzyme levels are restored in a time- and dosage-dependent fashion upon addition of serum to basal cultures. The serum factor is nondialyzable and moderately heat-stable. The stimulation by serum of the phenylalanine hydroxylas content of basal cultures is blocked by 3-[2-(3,5-dimethyl-2-oxocyclohexyl)-2-hydroxyethyl]glutarimide and requires ongoing cellular protein synthesis. When added to the enzyme-assay mixture in vitro, serum does not alter the phenylalanine hydroxylase activity of extracts from basal cultures. Three lines of evidence suggest that serum contains a nonsteroidal phenylalanine hydroxylase stimulatory components(s): (a) glucocorticoid antagonists inhibit less than one-half of the biological activity of serum; (b) exhaustive extraction of endogenous serum glucocorticoids with charcoal reduces the activity of serum to about one-half of control values; and (c) the stimulatory effects of charcoal reduces the values; and (c) the stimulatory effects of charcoal-extracted serum and hydrocortisone are additive. The phenylalanine hydroxylase stimulatory activities of the charcoal-extracted sera from four mammalian species and from three stages in development in one mammalian species are comparable. A survey of partially purified preparations of a number of known hormones failed to reveal any one capable of elevating the phenylalanine hydroxylas levels of basal cultures in a manner comparable to that of charcoal-extracted serum.  相似文献   

5.
We report here the identification of a cultured human hepatoma cell line which possesses an active phenylalanine hydroxylase system. Phenylalanine hydroxylation was established by growth of cells in a tyrosine-free medium and by the ability of a cell-free extract to convert [14C]phenylalanine to [14C]tyrosine in an enzyme assay system. This enzyme activity was abolished by the presence in the assay system of p-chlorophenylalanine but no significant effect on the activity was observed with 3-iodotyrosine and 6-fluorotryptophan. Use of antisera against pure monkey or human liver phenylalanine hydroxylase has detected a cross-reacting material in this cell line which is antigenically identical to the human liver enzyme. Phenylalanine hydroxylase purified from this cell line by affinity chromatography revealed a multimeric molecular weight (estimated 275,000) and subunit molecular weights (estimated 50,000 and 49,000) which are similar to those of phenylalanine hydroxylase purified from a normal human liver. This cell line should be a useful tool for the study of the human phenylalanine hydroxylase system.  相似文献   

6.
Rat hepatoma H4-II-E-C3 culture phenylalanine hydroxylase is unique and differs from any of the three isozymes of liver or the one of kidney. Isoelectric focusing results in a single isozyme with an isoelectric point of 5.20 compared to 5.20, 5.30, 5.60 for the liver and 5.35 for the kidney. Hepatoma phenylalanine hydroxylase cross reacts with antibody # 2 of rat liver but differs from isozyme # 2 by a tenfold difference in the ratio of antigen to antibody at equivalence on immunotitration. Kidney phenylalanine hydroxylase which also cross reacts with antibody # 2 of liver can quantitatively (at 2 mU per mg immunoglobulin) absorb antibody against hepatoma enzyme, liver isozyme # 2 and itself without having any effect on antibody # 1 and # 3 of liver.  相似文献   

7.
Phenylalanine hydroxylase was prepared from human foetal liver and purified 800-fold; it appeared to be essentially pure. The phenylalanine hydroxylase activity of the liver was confined to a single protein of mol.wt. approx. 108000, but omission of a preliminary filtration step resulted in partial conversion into a second enzymically active protein of mol.wt. approx. 250000. Human adult and full-term infant liver also contained a single phenylalanine hydroxylase with molecular weights and kinetic parameters the same as those of the foetal enzyme; foetal, newborn and adult phenylalanine hydroxylase are probably identical. The K(m) values for phenylalanine and cofactor were respectively one-quarter and twice those found for rat liver phenylalanine hydroxylase. As with the rat enzyme, human phenylalanine hydroxylase acted also on p-fluorophenylalanine, which was inhibitory at high concentrations, and p-chlorophenylalanine acted as an inhibitor competing with phenylalanine. Iron-chelating and copper-chelating agents inhibited human phenylalanine hydroxylase. Thiol-binding reagents inhibited the enzyme but, as with the rat enzyme, phenylalanine both stabilized the human enzyme and offered some protection against these inhibitors. It is hoped that isolation of the normal enzyme will further the study of phenylketonuria.  相似文献   

8.
The hydrocortisone stimulation of phenylalanine hydroxylase activity in Reuber H4 hepatoma cells is shown to be associated with an alteration in phenylalanine hydroxylase isozyme composition. Three forms of phenylalanine hydroxylase were identified in H4 cells which have been treated with hydrocortisone; however, only one of these forms appears to be present prior to glucocorticoid treatment. The relative amounts, as well as the total amount, of the three forms and their chromatographic behavior on hydroxylapatite are nearly identical to the three phenylalanine hydroxylase isozymes found in adult rat liver. The hydroxylase isozyme composition in 2 day old rats is similar to that found in adult rats and in H4 cells treated with hydrocortisone.  相似文献   

9.
Phenylalanine hydroxylase in Reuber H4 hepatoma cell cultures can be rapidly inactivated by the addition of epinephrine, norepinephrine, dopamine, or 3,4-dihydroxyphenylalanine, in order of decreasing effectiveness, to the culture medium. The enzyme was 50% inactivated in 1 hour by 25 muM (R)-epinephrine or 45 muM (R)-norepinephrine in the medium. High concentrations of epinephrine caused a 70% inactivation in 15 min. Phenylalanine hydroxylase appears to be reversibly inactivated by epinephrine within the cells; since washing the compound off the cell cultures resulted in a rapid restoration of enzyme activity (40% in 1 hour), cycloheximide had little effect on the initial rate of recovery of enzyme activity and the same amount of phenylalanine hydroxylase antigen per cell was isolated from treated and normal cultures. Both (S)- and (R)-epinephrine inactivated the enzyme, and 0.1 mM desmethylimipramine, an inhibitor of amine transport, significantly decreased the effect of epinephrine on the hydroxylase activity. The possibility, suggested by the above results, that epinephrine might be directly inactivating phenylalanine hydroxylase within the cells was supported by the finding that purified rat liver phenylalanine hydroxylase would be 50% inactivated by 1.5 muM epinephrine in 10 min.  相似文献   

10.
An electrophoretically homogeneous protein has been isolated from human liver autoptats, using a procedure employed for the isolation of phenylalanine hydroxylase from rat liver. The procedure includes chromatography of liver extracts on phenyl-Sepharose and subsequent purification on DEAE-Toyopearl. The activity of phenylalanine hydroxylase in the autoptats was markedly decreased in comparison with that in bioptats. The isolated protein possessed no enzymatic activity. However, the subunit composition of the protein, the molecular masses of protein subunits (55 and 57 kD) and the amino acid composition were close to those of the human enzyme. Antibodies to the protein inhibited the phenylalanine hydroxylase activity in human liver bioptats and weakly inhibited the rat enzyme. The experimental results suggest that the structural organization of phenylalanine hydroxylase does not alter as a result of the loss of enzymatic activity in cadaverous human liver.  相似文献   

11.
Summary Two previously unidentified mutations at the phenylalanine hydroxylase locus were found during a study of the relationship between genotype and phenotype in phenylketonuria and hyperphenylalaninemia. One mutation eliminates the BamHI site in exon 7 and the other eliminates the HindIII site in exon 11 of the phenylalanine hydroxylase gene. They were suspected because of deviating restriction fragment patterns and confirmed by amplification, via the polymerase chain reaction, of exon 7 and exon 11, respectively, followed by digestion with the appropriate restriction enzyme. Direct sequencing of amplified mutant exon 7 revealed a G/C to T/A transversion at the first base of codon 272, substituting a GGA glycine codon for a UGA stop codon. Direct sequencing of amplified mutant exon 11 revealed a deletion of codon 364, a CTT leucine codon. The exon 7 mutation can be expected to result in a truncated protein and the exon 11 mutation in the elimination of an amino acid in the catalytic region of the enzyme. A patient who is a compound heterozygote for these two mutations has classical phenylketonuria. It is concluded that each of the two mutations leads to a profound loss of enzymatic activity. The segregation of these mutations with disease alleles in 4 and 2 families, respectively, supports the hypothesis that multiple mutations at the phenylalanine hydroxylase locus explain the variable phenylalanine tolerance in patients with phenylalanine hydroxylase deficiency.  相似文献   

12.
A substantially new method has been developed to measure protein turnover. Its basis is the notion that in labeling experiments a secreted protein can be used to determine the specific radioactivity of the intracellular amino acid precursor pool. To measure protein turnover in the Reuber hepatoma H4 cell line, cultures were labeled with [3H]leucine for specified periods after which phenylalanine hydroxylase was isolated and its leucine specific radioactivity determined. Serum albumin secreted by the cultures was also isolated and used to estimate the leucine precursor pool specific radioactivity. The protein half-life of phenylalanine hydroxylase could them be calculated. Experiments performed at long and short labeling times and with high and low concentrations of leucine in the medium yielded equivalent results. Phenylalanine hydroxylase half-life in the H4 cells was investigated under both normal and hydrocortisone-induced growth conditions. Average half-lives of 7.4 and 8.2 h were found for induced and uninduced cultures, respectively. Although these measured enzyme half-lives were not essentially different, the steady state level of phenylalanine hydroxylase was increased 6.2-fold upon hydrocortisone induction, from 0.076 to 0.47 microgram/10(6) cells. The results demonstrated that hydrocortisone induces phenylalanine hydroxylase in the H4 cells by causing an increase in the rate of enzyme synthesis.  相似文献   

13.
Phenylalanine hydroxylase was prepared from rat liver and purified 200-fold to about 90% purity. All the enzymic activity of the liver appeared in a single protein of mol.wt. approx. 110000, but omission of dithiothreitol and of a preliminary filtration step to remove lipids resulted in partial conversion into a second enzymically active protein of mol.wt. approx. 250000. The K(m) and V(max.) values of the enzyme for phenylalanine, p-fluorophenylalanine and dimethyltetrahydropterin were measured; p-chlorophenylalanine inhibited the enzyme by competing with phenylalanine. Disc gel electrophoresis at pH7.2 showed a single protein band containing all the enzymic activity, but at pH8.7 the enzyme dissociated into two inactive fragments of similar but not identical molecular weight. The molecule of phenylalanine hydroxylase contained two atoms of iron, one atom of copper and one molecule of FAD; molybdenum was absent. Treatment with chelating agents showed that both non-haem iron and copper were necessary for enzymic activity. The molecule contained five thiol groups, and thiol-binding reagents inhibited the enzyme. Catalase or peroxidase enhanced enzymic activity fivefold; it is postulated that catalase (or other peroxidase) plays a part in the hydroxylation reaction independent of the protection by catalase of enzyme and cofactor from inactivation by a hydroperoxide.  相似文献   

14.
Mouse erythroleukemia (MEL) cells do not synthesize any detectable level of phenylalanine hydroxylase and thus do not grow in Tyr- medium. Rat hepatoma cells that constitutively express phenylalanine hydroxylase were treated prior to fusion with MEL cells with biochemical inhibitors to inactivate different macromolecular components of the cells, and the fusion products were selected in Tyr- medium. Continuously growing populations of cells resembling the parental MEL cells and expressing mouse phenylalanine hydroxylase were obtained only when rat hepatoma cells treated with mitomycin or iodoacetamide, which inactivate DNA and SH proteins, respectively, were fused with MEL cells. Fusion of MEL cells with UV-treated rat hepatoma cells did not result in the activation of the mouse phenylalanine hydroxylase gene. UV treatment damages both DNA and RNA. These data suggested that RNA was involved in the regulation of phenylalanine hydroxylase gene. Additional evidence for the role of RNA in the phenylalanine hydroxylase gene regulation was obtained from RNA transfection studies. RNA only from cells which express phenylalanine hydroxylase, such as rat hepatoma cells and MEL cybrids, when introduced into MEL cells by the CaPO4 coprecipitation method, resulted in the permanent activation of the mouse phenylalanine hydroxylase gene.  相似文献   

15.
P-chlorophenylalanine is an irreversible inhibitor of rat phenylalanine hydroxylase in vivo and in rat hepatoma cells and is frequently administered to rodents to create an animal model for phenylketonuria. We investigated the effect of p-chlorophenylalanine on production of human phenylalanine hydroxylase in human hepatoma cells and cells transformed with the recombinant human phenylalanine hydroxylase gene. P-chlorophenylalanine inhibited production of the human enzyme in human hepatoma cells and transformed mouse hepatoma cells but had no effect on the production of the enzyme in transformed NIH3T3 cells or in E. coli. Thus, phenylalanine hydroxylase inhibition does not result from a simple interaction between the drug and enzyme.  相似文献   

16.
Injections of phenylalanine increased a 2.5-fold in 9 h the hepatic phenylalanine hydroxylase activity of 6-day-old or adult rats that had been pretreated (24h earlier) with p-chlorophenylalanine; without such pretreatment, phenylalanine did not raise the enzyme concentration. This difference is paralleled by the much greater extent to which the injected phenylalanine accumulated in livers of the pretreated compared with the normal animals. The hormonal induction of hepatic phenylalanine hydroxylase activity obeyed different rules: an injection of cortisol was without effect on adult livers but caused a threefold rise in phenylalanine hydroxylase activity of immature ones, both without and after pretreatment with p-chlorophenylalanine. In the latter instance, the effects of cortisol, and of phenylalanine were additive. Actinomycin inhibited the cortisol- but not the substrate-induced increase of phenylalanine hydroxylase, whereas puromycin inhibited both. The results indicate that substrate and hormone, two potential positive regulators of the amount of the hepatic (but not the renal) phenylalanine hydroxylase, act independently by two different mechanisms. The negative effector, p-chlorophenylalanine, also appears to interact with the synthetic (or degradative) machinery rather than with the existing phenylalanine hydroxylase molecules: 24h were required in vivo for an 85% decrease to ensue, and no inhibition occurred in vitro when incubating the enzyme with p-chlorophenylalanine or with liver extracts from p-chlorophenylalanine-treated rats.  相似文献   

17.
Screening of a rat liver cDNA expression library constructed in the vector lambda gt11 with an affinity purified antiserum to rat phenylalanine hydroxylase has resulted in the isolation of two clones which contain the complete coding region (1362 base pairs) of phenylalanine hydroxylase and the entire 3'-untranslated region (562 base pairs). From the nucleotide sequence we deduced the amino acid sequence of the enzyme. The molecular weight is 51,632 (452 amino acids). The rat enzyme is highly homologous to human phenylalanine hydroxylase. The two proteins differ in only 36 amino acids (92% homology), many of which are conservative changes. A dot matrix computer program was used to analyze regions of homology with the amino acid sequence of rat tyrosine hydroxylase. Considerable homology was detected from amino acid 140 in the rat enzyme to the C terminus, but little or no homology was apparent in the N-terminal region. The cDNA clone was used to determine the levels of phenylalanine hydroxylase mRNA in rat tissues using RNA blot hybridization. Two mRNA species were detected, with approximate lengths of 2,000 and 2,400 nucleotides, which appear to derive from use of alternate polyadenylation signals. No difference in mRNA size was found in rats which have different phenylalanine hydroxylase alleles. The kidney was found to contain about 10% of the mRNA found in the liver, and no phenylalanine hydroxylase mRNA was detected in rat brain. Reuber H4 hepatoma cells were also analyzed for phenylalanine hydroxylase mRNA. The parental cells contained mRNA species of the same sizes as in rat liver. Incubation in 10(-6) M hydrocortisone for 24 h resulted in an 18-fold increase in the mRNA level. Mutant hepatoma cells which express very little phenylalanine hydroxylase contained less than 5% of the parental mRNA, but the gene still responded to hydrocortisone.  相似文献   

18.
Incubation of H4-II-E-C3 rat hepatoma cells with either hydrocortisone or dexamethasone resulted in 3- to 5-fold increases in the levels of both phenylalanine hydroxylase and its essential cofactor, tetrahydrobiopterin. Maximum elevation of phenylalanine hydroxylase was noted after 24 h of incubation, whereas significant increases in tetrahydrobiopterin were found only after 48 h exposure of the cells to glucocorticoids. Removal of hormone from the culture medium resulted in rapid loss of cell tetrahydrobiopterin, but a much slower decline in the level of phenylalanine hydroxylase. Thus, although the levels of both phenylalanine hydroxylase and tetrahydrobiopterin in rat hepatoma cells are regulated by glucocorticoids, this regulation is apparently not strictly coordinated. Nevertheless, control of cellular tetrahydrobiopterin levels may be an important regulator of hepatic phenylalanine catabolism since significant increases in the ability of intact rat liver cells to hydroxylate phenylalanine were observed only after 48 h exposure to glucocorticoids, in correlation with increases in cell tetrahydrobiopterin content.  相似文献   

19.
Rhodamine-conjugated antibodies specific for phenylalanine hydroxylase and serum albumin were employed as cytochemical probes to identify these two proteins in H4 hepatoma cells and in isolated rat hepatocytes. Each fluorescent antibody stained the cells specifically and in a distinctive manner. In both cell types, albumin staining was discretely localized in cytoplasmic and in H4 cultures varied somewhat from cell to cell. Evidence from cultures of REB15 cells, a strain derived by cloning H4 cells in tyrosine-free medium, suggested that the staining variability of H4 cells could reflect a variability in phenylalanine hydroxylase content. Hydrocortisone-treated H4 cells and REB15 cultures contain increased amounts of phenylalanine hydroxylase; and all cells in the culture appear to be induced by the hormone. Evidence was presented to show that the albumin visualized within the isolated hepatocytes had been synthesized by these cells, and, furthermore, that quantitatively nearly all intracellular albumin in the isolated rat hepatocytes appeared to be entrained in the secretion pathway (analogous data already exist for H4 cells [Baker, R.E., and R. Shiman. 1979. J. Biol. Chem. 254:9633-9639]). By scoring specific fluorescence, 86 and 98% of the H4 cells and 89 and 98% of the isolated hepatocytes were found to contain phenylalanine hydroxylase and albumin, respectively. Therefore, almost all cells in each population appeared to synthesize both proteins. An implication of these findings is that in rat virtually all liver parenchymal cells must synthesize both phenylalanine hydroxylase and albumin.  相似文献   

20.
Immunoprecipitation of the phenylalanine hydroxylase formed by translation of rat liver RNA in a rabbit reticulocyte cell-free protein synthesis system was used to examine the origin of the molecular weight heterogeneity of the enzyme. Sodium dodecyl sulfate-polyacrylamide electrophoresis of the immunoprecipitated products showed that in most cases a single specifically immunoprecipitated polypeptide was produced which corresponded to the higher molecular weight (H) form of phenylalanine hydroxylase (Mr = 50,000). The identity of the product was confirmed by immunological competition and peptide mapping. RNA from other rats, however, coded for both the H-form and the lower molecular weight (L) form of phenylalanine hydroxylase or for only the L-form. The evidence suggests that the L-form derives from a different mRNA, rather than by proteolysis of the H-form, an interpretation which is supported by the isolation of the lower form of phenylalanine hydroxylase from livers of some rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号