首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies were undertaken to investigate the mechanism of the marked accumulation of an apoE-poor very low density lipoprotein (VLDL) subfraction in untreated Type IV and IIb hypertriglyceridemic subjects. Heparin-Sepharose chromatography was used to separate large VLDL (Sf 60-400) from fasted subjects, into an apoE-poor, unbound fraction and an apoE-rich, bound fraction. As a percent of total VLDL protein, the apoE-poor fraction comprised 40 +/- 4% of total VLDL in hypertriglyceridemic subjects versus 25% in normal subjects. Compared to the apoE-rich, bound fraction, this apoE-poor material was found to have a 5-fold lower ratio of apoE to apoC (0.20 +/- 0.06 vs 0.91 +/- 0.18, P less than 0.005), but a 1.5-fold higher ratio of triglyceride to protein (11.41 +/- 0.85 vs 7.97 +/- 0.77, P less than 0.01). In addition, the apoE-poor fraction was found to be enriched 2-fold in apoB-48 (10.30 +/- 2.41% vs 5.73 +/- 1.59% of total apoB, P less than 0.005) compared to the apoE-rich fraction, suggesting that the apoE-poor fraction contains more chylomicron remnants. The amount of this apoE-poor VLDL was markedly reduced following a reduction in VLDL triglyceride levels (a decrease from 40 +/- 4% to 21 +/- 2% of VLDL protein following a 50% reduction in VLDL triglyceride levels). The large VLDL from Type I, III, and V hyperlipoproteinemic subjects subfractionated using heparin-Sepharose showed an equal distribution of apoE between the two fractions in contrast with the Type IV and IIb subjects. The separation of VLDL from Type I, III, and V subjects using heparin-Sepharose involves a mechanism other than apoE binding. Separation in the latter likely results from apoB-100 binding to heparin, as opposed to apoE binding of VLDL from Type IV and IIb subjects.  相似文献   

2.
We previously showed 1 that a peptide, Ac-hE18A-NH(2), in which the arginine-rich heparin-binding domain of apolipoprotein E (apoE) [residues 141;-150] (LRKLRKRLLR), covalently linked to 18A (DWLKAFYDKVAEKLKEAF; a class A amphipathic helix with high lipid affinity), enhanced LDL uptake and clearance. Because VLDL and remnants contain more cholesterol per particle than LDL, enhanced hepatic clearance of VLDL could lead to an effective lowering of plasma cholesterol. Therefore, in the present article we compared the ability of this peptide to mediate/facilitate the uptake and degradation of LDL and VLDL in HepG2 cells. The peptide Ac-hE18A-NH(2), but not Ac-18A-NH(2), enhanced the uptake of LDL by HepG2 cells 5-fold and its degradation 2-fold. The association of the peptides with VLDL resulted in the displacement of native apoE; however, only Ac-hE18A-NH(2) but not Ac-18A-NH(2) caused markedly enhanced uptake (6-fold) and degradation (3-fold) of VLDL. Ac-hE18A-NH(2) also enhanced the uptake (15-fold) and degradation (2-fold) of trypsinized VLDL Sf 100;-400 (containing no immuno-detectable apoE), indicating that the peptide restored the cellular interaction of VLDL in the absence of its essential native ligand (apoE). Pretreatment of HepG2s with heparinase and heparitinase abrogated all peptide-mediated enhanced cellular activity, implicating a role for cell-surface heparan sulfate proteoglycans (HSPG). Intravenous administration of Ac-hE18A-NH(2) into apoE gene knockout mice reduced plasma cholesterol by 88% at 6 h and 30% at 24 h after injection. We conclude that this dual-domain peptide associates with LDL and VLDL and results in rapid hepatic uptake via a HSPG-facilitated pathway.  相似文献   

3.
Cholesterol-fat feeding is associated with unusual alterations in the composition of plasma lipoproteins in alloxan-diabetic rabbits. In the present study plasma lipoprotein lipid and apoprotein composition was studied before and after 48 hr of fasting in cholesterol-fed diabetic and control rabbits in order to further characterize these alterations. Compared with control rabbits, the diabetic rabbits had similar plasma cholesterol levels, but 100-fold higher triglyceride levels prior to fasting. These plasma lipids were distributed mainly to large, Sf greater than 400 plasma lipoproteins in the diabetic rabbits, and to beta-VLDL in control rabbits. Sf greater than 400 lipoproteins, VLDL, IDL, LDL, and HDL from diabetic rabbits had triglyceride as the predominant lipoprotein core lipid. Sf greater than 400 lipoproteins and VLDL from diabetic rabbits had lesser amount of apoprotein E, and greater amounts of apoproteins A-I, A-IV, and B-48 as percent of total apoprotein mass in comparison with control rabbits. Fasting reduced plasma triglyceride levels by 55% in diabetic rabbits. Sf greater than 400 lipoprotein and VLDL triglyceride content decreased but remained a major core lipid. Fasting eliminated apoproteins A-I and A-IV from Sf greater than 400 lipoproteins and VLDL, but had no significant effect on apoB-48 content. Insulin treatment of the diabetic rabbits reduced plasma triglyceride by approximately 90% resulting in cholesteryl ester-rich particles reassembling beta-VLDL both in the Sf greater than 400 lipoprotein and VLDL fractions. These results indicate that the alterations in plasma lipoproteins in cholesterol-fed diabetic rabbits result from the presence in the d less than 1.006 g/ml plasma lipoprotein class of partially metabolized, intestinally derived particles.  相似文献   

4.
Hypertriglyceridemic (HTG) very low density lipoproteins (VLDL) from subjects with type IV hyperlipoproteinemia induce both cholesteryl ester (CE) and triglyceride (TG) accumulation in cultured J774 macrophages. We examined whether the cytokine interferon-gamma (IFN-gamma), which is expressed by lymphocytes in atherosclerotic lesions, would modulate macrophage uptake of HTG -VLDL. Incubation of cells with HTG -VLDL alone significantly increased cellular CE and TG mass 17- and 4.3-fold, respectively, while cellular free cholesterol (FC) was unaffected. Pre-incubation of cells with IFN-gamma (50 U/ml) prior to incubation with HTG -VLDL caused a marked enhancement in cellular CE and TG 27- and 6-fold over no additions (controls), respectively, and a 1.5-fold increase in FC. IFN-gamma increased low density lipoprotein (LDL)-induced cellular CE 2-fold compared to LDL alone. IFN-gamma did not enhance the uptake of type III (apoE2/E2) HTG -VLDL or VLDL from apoE knock-out mice. Incubations in the presence of a lipoprotein lipase (LPL) inhibitor or an acylCoA:cholesterol acyltransferase (ACAT) inhibitor demonstrated that the IFN-gamma-enhanced HTG -VLDL uptake was dependent on LPL and ACAT activities. IFN-gamma significantly increased the binding and degradation of 125I-labeled LDL. Binding studies with 125I-labeled alpha2-macroglobulin, a known LDL receptor-related protein (LRP) ligand, and experiments with copper-oxidized LDL indicated that the IFN-gamma-enhanced uptake was not due to increased expression of the LRP or scavenger receptors. Thus, IFN-gamma may promote foam cell formation by accelerating macrophage uptake of native lipoproteins. IFN-gamma-stimulated CE accumulation in the presence of HTG -VLDL occurs via a process that requires receptor binding-competent apoE and active LPL. IFN-gamma-enhanced uptake of both HTG -VLDL and LDL is mediated by the LDL-receptor and requires ACAT-mediated cholesterol esterification.  相似文献   

5.
Apolipoprotein E (apoE) is the primary recognition signal on triglyceride-rich lipoproteins responsible for interacting with low density lipoprotein (LDL) receptors and LDL receptor-related protein (LRP). It has been shown that lipoprotein lipase (LPL) and hepatic triglyceride lipase (HTGL) promote receptor-mediated uptake and degradation of very low density lipoproteins (VLDL) and remnant particles, possibly by directly binding to lipoprotein receptors. In this study we have investigated the requirement for apoE in lipase-stimulated VLDL degradation. We compared binding and degradation of normal and apoE-depleted human VLDL and apoE knockout mouse VLDL in human foreskin fibroblasts. Surface binding at 37 degrees C of apoE knockout VLDL was greater than that of normal VLDL by 3- and 40-fold, respectively, in the presence of LPL and HTGL. In spite of the greater stimulation of surface binding, lipase-stimulated degradation of apoE knockout mouse VLDL was significantly lower than that of normal VLDL (30, 30, and 80%, respectively, for control, LPL, and HTGL treatments). In the presence of LPL and HTGL, surface binding of apoE-depleted human VLDL was, respectively, 40 and 200% of normal VLDL whereas degradation was, respectively, 25 and 50% of normal VLDL. LPL and HTGL stimulated degradation of normal VLDL in a dose-dependent manner and by a LDL receptor-mediated pathway. Maximum stimulation (4-fold) was seen in the presence LPL (1 microgram/ml) or HTGL (3 microgram/ml) in lovastatin-treated cells. On the other hand, degradation of apoE-depleted VLDL was not significantly increased by the presence of lipases even in lovastatin-treated cells. Surface binding of apoE-depleted VLDL to metabolically inactive cells at 4 degrees C was higher in control and HTGL-treated cells, but unchanged in the presence of LPL. Degradation of prebound apoE-depleted VLDL was only 35% as efficient as that of normal VLDL. Surface binding of apoE knockout or apoE-depleted VLDL was to heparin sulfate proteoglycans because it was completely abolished by heparinase treatment. However, apoE appears to be a primary determinant for receptor-mediated VLDL degradation.Our studies suggest that overexpression of LPL or HTGL may not protect against lipoprotein accumulation seen in apoE deficiency.  相似文献   

6.
We found that LPL enhances the binding to HepG2 cells and fibroblasts of both VLDL and apoE free LDL. In the presence of 1.7 micrograms/ml of purified bovine LPL, the binding of LDL and VLDL was up to 60 fold increased as compared to the control binding. In addition, LPL enhances the binding in LDL-receptor negative fibroblasts to the same extent as it does in normal fibroblasts. The presence of 10 mM of EGTA could not prevent the LPL-mediated enhancement of the binding of both LDL and VLDL to fibroblasts, indicating that the binding is calcium independent. Furthermore, up- and down regulation of the LDL receptor did not influence the binding of these lipoproteins in the presence of LPL. Strikingly, we found that the enhancing effect of LPL on the binding of LDL and VLDL to HepG2 cells could be abolished by preincubation of the cells with heparinase, suggesting that heparan sulphate proteoglycans are involved in the LPL-mediated stimulation. We hypothesize that the enhancement of the cellular binding of LDL and VLDL in the presence of LPL is caused by an LPL-bridging between proteoglycans present on the plasma membrane and the lipoproteins, and that the LDL receptor and LRP are not involved.  相似文献   

7.
Subfractions of CLDL (VLDL), Sf 100-400; CLDL2, Sf 60--100; VLDL3, Sf 20--60) and LDL (LDL), Sf 12--20; LDL2, Sf 6--12; LDL3, Sf 3--6) were isolated from the plasma of three normal, three type III and four type IV hyperlipoproteinemic subjects. In the type IV group, all VLDL subspecies were of normal composition but were increased in concentration in the order VLDL1 greater than VLDL2 greater than VLDL3. In the same subjects, although LDL2 was lowered and LDL3 increased, the total plasma LDL concentration was normal. All VLDL subfractions were elevated in the type III group, but in this case VLDL3 predominated. These subfractions were enriched in cholesteryl esters and depleted in triglyceride. In the LDL density range there was a shift of mass towards the least dense fraction, LDL1, which was of normal composition. EPR studies of the VLDL and LDL subfractions in a type IV subject demonstrated a decrease in fluidity with increasing density. The major change occurred between VLDL3 and LDL1 and was attributed to a substantial alteration in the cholesteryl ester : triglyceride ratio in the particle. A similar argument was used to explain thction in normal or type IV subjects. Particle diameters, determined by laser light-scattering spectroscopy were in good agreement with the values obtained by electron microscopy. This study provides a baseline for the examination of the relationship between the physical and metabolic properties of VLDL and LDL subfractions in type III and IV hyperlipoproteinemia.  相似文献   

8.
The regulation of lipoprotein secretion in the cell line HepG2 was studied. HepG2 cells were preincubated with chylomicron remnants (triglyceride- and cholesterol-rich) or with beta very low density lipoproteins (beta-VLDL) (cholesterol-rich). The medium was removed and the cells were incubated for and additional 24 hr in a lipoprotein-free medium that contained either [2-3H]glycerol or DL-[2-3H]mevalonate. Cells and media were harvested, and lipoproteins were separated and fractionated. The mass and radioactivity of the lipids in cells and in the lipoproteins were measured. The activities of cellular acyl-CoA:cholesterol acyltransferase (ACAT) and 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase were also determined. Preincubation with chylomicron remnants induced an increase in cellular triglyceride and stimulated both HMG-CoA reductase and ACAT. Preincubation with beta-VLDL induced an increase in cellular free and esterified cholesterol, inhibited HMG-CoA reductase and stimulated ACAT. Although the absolute amount of VLDL is small, chylomicron remnants induced large relative increases in the amount of triglyceride and phospholipid secreted in VLDL and decreases in the amount of triglyceride secreted in low density (LDL) and high density (HDL) lipoproteins as well as a decrease in the amount of phospholipid secreted in HDL. In contrast, preincubation with beta-VLDL did not affect triglyceride secretion, but markedly stimulated the amount of phospholipid secreted in HDL. Comparison of the mass of glycerolipid actually secreted with that calculated from the cellular specific activity suggested that glycerolipids are secreted from single, rapidly equilibrating pools. Cholesterol and cholesteryl ester secretion were affected differently. Preincubation with chylomicron remnants increased the amount of free cholesterol secreted in both VLDL and LDL, but did not alter cholesteryl ester secretion. Preincubation with beta-VLDL increased free cholesterol secretion in all lipoprotein fractions and increased cholesteryl ester secretion in VLDL and LDL, but not HDL. Comparison of isotope and mass data suggested that the cholesteryl ester secreted came primarily from a preformed, rather than an newly synthesized, pool. In summary, these data provide insight to the mechanism whereby a liver cell regulates the deposition of exogenous lipid.  相似文献   

9.
Mixed dyslipidemia of phenotype IIB is characterized by elevated levels of very low density lipoprotein (VLDL)-1 and VLDL-2 subfractions and of low density lipoprotein (LDL), which are associated with premature formation of atherosclerotic plaques, characterized by the presence of lipid-rich macrophage foam cells. Lipoprotein lipase (LPL) is a key factor in mediating macrophage lipid accumulation and foam-cell formation from native VLDL particles. The action of macrophage-derived LPL in the induction of intracellular lipid accumulation from triglyceride-rich lipoprotein (TRL) subfractions (VLDL-1, VLDL-2) is, however, indeterminate, as is the potential role of VLDL-1 and VLDL-2 in modulating macrophage LPL expression. We evaluated the role of LPL in the interaction of type IIB VLDL-1 and VLDL-2 with human macrophages. Both VLDL-1 and VLDL-2 subfractions induced significant accumulation of triglyceride (9.8-fold, P<0.0001, and 4.8-fold, P<0.0001, respectively) and of free cholesterol content (1.4-fold, P<0.001, and 1.2-fold, P=0.02, respectively). Specific inhibition (90%) of the lipolytic activity of endogenous LPL by tetrahydrolipstatin (THL) in the presence of VLDL-1 or VLDL-2 resulted in marked reduction in cellular loading of both triglycerides (-89%, P=0.008, and -89%, P=0.015, respectively) and free cholesterol (-76%, P=0.02, and -55%, P=0.06 respectively). Furthermore, VLDL-1 and VLDL-2 induced marked increase in macrophage-derived LPL enzyme activity (+81%, P=0.002, and +45%, P=0.02), but did not modulate macrophage-derived LPL mRNA and protein expression; consequently, LPL specific activity was significantly increased from 1.6 mU/microg at baseline to 4.1 mU/microg (P=0.01) and 3.1 mU/microg (P=0.05), in the presence of VLDL-1 and VLDL-2, respectively. We conclude that type IIB VLDL-1 and VLDL-2 induce triglyceride accumulation in human monocyte-macrophages primarily via the lipolytic action of LPL, which may involve stabilization and activation of the macrophage-secreted enzyme, rather than via modulation of enzyme production.  相似文献   

10.
Our previous studies showed that very low density lipoproteins, Sf 60-400 (VLDL), from hypertriglyceridemia subjects, but not VLDL from normolipemic subjects, suppress HMG-CoA reductase activity in normal human fibroblasts. To determine if this functional abnormality of hypertriglyceridemic VLDL resulted from differences in uptake of the VLDL by the low density lipoprotein (LDL) receptor pathway, we isolated VLDL subclasses from the d less than 1.006 g/ml fraction of normal and hypertriglyceridemic plasma by flotation through a discontinuous salt gradient for direct and competitive binding studies in cultured human fibroblasts. VLDL from the plasma of subjects with hypertriglyceridemia types 4 and 5 were at least as effective as normal LDL in competing for 125I-labeled LDL binding, uptake, and degradation when compared either on the basis of protein content or on a particle basis. By contrast, normolipemic Sf 60-400 VLDL were ineffective in competing with the degradation of 125I-labeled LDL, and Sf 20-60 VLDL (VLDL3) were less effective in reducing specific 125I-labeled LDL degradation than were LDL, consistent with their effects on HMG-CoA reductase activity. In direct binding studies, radiolabeled VLDL from hypertriglyceridemic but not normolipemic subjects were bound, internalized, and degraded with high affinity and specificity by normal fibroblasts. Uptake and degradation of iodinated hypertriglyceridemic VLDL Sf 100-400 showed a saturable dependence on VLDL concentration. Specific degradation plateaued at approximately 25 micrograms VLDL protein/ml, with a half maximal value at 6 micrograms/ml. The most effective competitor of hypertriglyceridemic VLDL uptake and degradation was hypertriglyceridemic VLDL itself. LDL were effective only at high concentrations. Uptake of normal VLDL by normal cells was a linear rather than saturable function of VLDL concentration. By contrast, cellular uptake of the smaller normal VLDL3 was greater than uptake of larger VLDL and showed saturation dependence. After incubation of normal VLDL with 125I-labeled apoprotein E, reisolated 125I-E-VLDL were as effective as LDL in suppression of HMG-CoA reductase activity, suggesting that apoE is involved in receptor-mediated uptake of large suppressive VLDL. We conclude that 1) hypertriglyceridemic VLDL Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by the high affinity LDL receptor-mediated pathway; 2) by contrast, normal VLDL, Sf 60-400 are bound, internalized, and degraded by normal fibroblasts primarily by nonspecific, nonsaturable routes; and 3) of the normal VLDL subclasses, only the smallest Sf 20-60 fraction is bound and internalized via the LDL pathway.  相似文献   

11.
KK/Snk mice (previously KK/San) possessing a recessive mutation (hypl) of the angiopoietin-like 3 (Angptl3) gene homozygously exhibit a marked reduction of VLDL due to the decreased Angptl3 expression. Recently, we proposed that Angptl3 is a new class of lipid metabolism modulator regulating VLDL triglyceride (TG) levels through the inhibition of lipoprotein lipase (LPL) activity. In this study, to elucidate the role of Angptl3 in atherogenesis, we investigated the effects of hypl mutation against hyperlipidemia and atherosclerosis in apolipoprotein E knockout (apoEKO) mice. ApoEKO mice with hypl mutation (apoEKO-hypl) exhibited a significant reduction of VLDL TG, VLDL cholesterol, and plasma apoB levels compared with apoEKO mice. Hepatic VLDL TG secretion was comparable between both apoE-deficient mice. Turnover studies revealed that the clearance of both [3H]TG-labeled and 125I-labeled VLDL was significantly enhanced in apoEKO-hypl mice. Postprandial plasma TG levels also decreased in apoEKO-hypl mice. Both LPL and hepatic lipase activities in the postheparin plasma increased significantly in apoEKO-hypl mice, explaining the enhanced lipid metabolism. Furthermore, apoEKO-hypl mice developed 3-fold smaller atherogenic lesions in the aortic sinus compared with apoEKO mice. Taken together, the reduction of Angptl3 expression is protective against hyperlipidemia and atherosclerosis, even in the absence of apoE, owing to the enhanced catabolism and clearance of TG-rich lipoproteins.  相似文献   

12.
The beta-VLDL receptor pathway of murine P388D1 macrophages   总被引:1,自引:0,他引:1  
Very low density lipoproteins Sf 100-400 (VLDL1) from hypertriglyceridemic (HTG) subjects and chylomicrons cause receptor-mediated lipid engorgement in unstimulated macrophages in vitro via the beta-VLDL receptor pathway. We now report that the murine macrophage P388D1 cell line possesses the characteristics of the beta-VLDL receptor pathway observed previously in freshly isolated resident murine peritoneal macrophages or human monocyte-macrophages. HTG-VLDL1 isolated from the plasma of subjects with hypertriglyceridemia types 3, 4, and 5 interact with P388D1 macrophages in a high-affinity, curvilinear manner. beta-VLDL, HTG-VLDL1, chylomicrons, and thrombin-treated HTG-VLDL1 (which do not bind to the LDL receptor) compete efficiently and similarly for the uptake and degradation of HTG-VLDL1. LDL and acetyl LDL do not compete, indicating that uptake of HTG-VLDL1 is via neither the LDL receptor nor the acetyl LDL receptor. Binding of thrombin-treated HTG-VLDL1 to the beta-VLDL receptor indicates that the thrombin-accessible apoE, which is absolutely required for interaction of HTG-VLDL Sf greater than 60 with the LDL receptor, is not required for binding to the beta-VLDL receptor. The uptake and degradation of 125I-labeled HTG-VLDL1 is suppressed up to 80-90% by preincubation of the cells with sterols, acetyl LDL, or beta-VLDL, indicating that this process is not via the irrepressible chylomicron remnant (apoE) receptor. Chylomicrons, HTG-VLDL1, and thrombin-treated HTG-VLDL1-but not normal VLDL1, beta-VLDL, LDL, or acetyl LDL-produce massive triglyceride accumulation (10-20-fold mass increases in 4 hr) in P388D1 macrophages.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
This study was designed to investigate the response of Type III hyperlipoproteinemic subjects to bezafibrate therapy. The metabolism of apolipoprotein B was examined in four lipoprotein subclasses of Sf 60-400 (large very low density lipoprotein (VLDL)), Sf 20-60 (small VLDL), Sf 12-20 (intermediate density lipoprotein (IDL)), and Sf 0-12 (low density lipoprotein (LDL)) before and during bezafibrate therapy. Treatment reduced the plasma concentration of VLDL and raised high density lipoprotein (HDL) cholesterol. There was no net change in LDL cholesterol or its associated apolipoprotein B. The decrease in plasma VLDL derived mainly from an inhibition of synthesis of both large and small subfractions which reduced the number of particles in the circulation without normalizing their lipid composition. Catabolism of the larger VLDL also increased, presumably as a result of lipoprotein lipase activation. Although the plasma concentration of LDL was unchanged, both its synthesis and catabolism were perturbed. Its fractional catabolic rate fell by 50%, but the impact that this would have had on its steady state level in the circulation was apparently blunted by a decrease in its synthesis from Sf 12-20 IDL. In the control phase of the study, most IDL apolipoprotein B was converted to LDL. Bezafibrate therapy channelled this material towards direct catabolism.  相似文献   

14.
Large triglyceride-rich very low density lipoproteins (VLDL) Sf 60-400 from hypertriglyceridemic (HTG) patients, but not VLDL from normal subjects, bind to the LDL receptor of human skin fibroblasts because they contain apolipoprotein E (apoE) of the correct conformation, accessible both to the LDL receptor and to specific proteolysis by alpha-thrombin. Trypsin treatment of HTG-VLDL Sf 60-400 causes extensive apoB hydrolysis (fragments less than 100,000 mol wt), total degradation of apoE, and thus complete loss of LDL receptor binding. The reincorporation of apoE (1 mol/mol VLDL) into trypsin-treated HTG-VLDL completely restored the ability of HTG-VLDL to interact with the LDL receptor, suggesting that apoE probably does not induce a conformational change in apoB which results in receptor recognition, nor is intact apoB necessary to maintain the appropriate conformation of apoE for LDL receptor binding. As a model of large triglyceride-rich VLDL Sf greater than 60, we fractionated Intralipid by the Lindgren method of cumulative flotation and prepared apoE-Intralipid complexes. Competitive binding studies demonstrated that apoE-Intralipid is at least as effective as LDL for uptake and degradation of 125I-labeled LDL. Control Intralipid complexes containing apoA-I instead of apoE do not compete with iodinated LDL. Since these TG-rich complexes contain no apoB, apoB is, therefore, not only not sufficient for receptor-mediated uptake of large particles, it is not necessary. ApoE of the correct conformation is not only necessary but is sufficient to mediate receptor binding of large triglyceride-rich particles to the LDL receptor.  相似文献   

15.
Pregnancy is associated with increases in plasma total cholesterol (TC) and triglycerides (TG). Individuals with decreased LPL activity have a mild form of hypertriglyceridemia. Variations in the apolipoprotein E (apoE) gene have been associated with increases in plasma TG in addition to differences in plasma TC, LDL cholesterol (LDL-C), and HDL cholesterol (HDL-C). Because of the overproduction of TG-rich VLDL, normal pregnancy challenges the lipolytic capacity of LPL and the clearance of remnants particles. During pregnancy, LPL and apoE polymorphisms may contribute to hypertriglyceridemia. This study investigated the impact of three LPL polymorphisms and the apoE genotypes on lipid levels during pregnancy. Fasting plasma lipids were measured and analyses of the LPL and apoE polymorphisms were performed in 250 women in the third trimester of pregnancy. S447X carriers had lower TG (P = 0.003), and N291S carriers had lower HDL-C (P < 0.02) and higher fractional esterification rate of HDL (FER(HDL)) (P = 0.007), a measure of HDL particle size, than the noncarriers. The E2 allele was associated with lower TC, LDL-C, and FER(HDL) (P < 0.05) compared to the E3/E3 genotype. These findings support that LPL and apoE polymorphisms play an important role in lipid metabolism in pregnancy. The relationship of these polymorphisms to risk of coronary heart disease in women requires further study.  相似文献   

16.
We have used adenovirus-mediated gene transfer in apolipoprotein (apo)E−/− mice to elucidate the molecular etiology of a dominant form of type III hyperlipoproteinemia (HLP) caused by the R142C substitution in apoE4. It was found that low doses of adenovirus expressing apoE4 cleared cholesterol, whereas comparable doses of apoE4[R142C] greatly increased plasma cholesterol, triglyceride, and apoE levels, caused accumulation of apoE in VLDL/IDL/LDL region, and promoted the formation of discoidal HDL. Co-expression of apoE4[R142C] with lecithin cholesterol acyltransferase (LCAT) or lipoprotein lipase (LPL) in apoE−/− mice partially corrected the apoE4[R142C]-induced dyslipidemia. High doses of C-terminally truncated apoE4[R142C]-202 partially cleared cholesterol in apoE−/− mice and promoted formation of discoidal HDL. The findings establish that apoE4[R142C] causes accumulation of apoE in VLDL/IDL/LDL region and affects in vivo the activity of LCAT and LPL, the maturation of HDL, and the clearance of triglyceride-rich lipoproteins. The prevention of apoE4[R142C]-induced dyslipidemia by deletion of the 203-299 residues suggests that, in the full-length protein, the R142C substitution may have altered the conformation of apoE bound to VLDL/IDL/LDL in ways that prevent triglyceride hydrolysis, cholesterol esterification, and receptor-mediated clearance in vivo.  相似文献   

17.
Apolipoprotein E2 (apoE2)-associated hyperlipidemia is characterized by a disturbed clearance of apoE2-enriched VLDL remnants. Because excess apoE2 inhibits LPL-mediated triglyceride (TG) hydrolysis in vitro, we investigated whether direct or indirect stimulation of LPL activity in vivo reduces the apoE2-associated hypertriglyceridemia. Here, we studied the role of LPL and two potent modifiers, the LPL inhibitor apoC-III and the LPL activator apoA-V, in APOE2-knockin (APOE2) mice. Injection of heparin in APOE2 mice reduced plasma TG by 53% and plasma total cholesterol (TC) by 18%. Adenovirus-mediated overexpression of LPL reduced plasma TG by 85% and TC by 40%. Both experiments indicate that the TG in apoE2-enriched particles is a suitable substrate for LPL. Indirect activation of LPL activity via deletion of Apoc3 in APOE2 mice did not affect plasma TG levels, whereas overexpression of Apoa5 in APOE2 mice did reduce plasma TG by 81% and plasma TC by 41%. In conclusion, the hypertriglyceridemia in APOE2 mice can be ameliorated by the direct activation of LPL activity. Indirect activation of LPL via overexpression of apoA-V does, whereas deletion of apoC-III does not, affect the plasma TGs in APOE2 mice. These data indicate that changes in apoA-V levels have a dominant effect over changes in apoC-III levels in the improvement of APOE2-associated hypertriglyceridemia.  相似文献   

18.
Tamoxifen, a nonsteroidal antiestrogenic antitumor agent, has weak estrogen-like effects on lipid metabolism, however, the mechanism remains unknown. We previously reported that tamoxifen decreases the activity of lipoprotein lipase (LPL), a key enzyme in triglyceride metabolism, in patients with breast cancer. This study evaluated the effect of tamoxifen on LPL activity in vitro and in vivo. In experiment 1, total cholesterol, triglyceride, adipose tissue weight, and LPL activity of post-heparin plasma were measured in ovariectomized female rats with and without tamoxifen treatment. In experiment 2, purified very-low-density lipoprotein (VLDL) and purified LPL were incubated with and without tamoxifen or estrogen, and the triglycerides in VLDL were measured using an enzymatic method. In experiment 1, total cholesterol and adipose tissue weight decreased significantly in tamoxifen-treated rats (p < 0.001 and p < 0.01, respectively). Triglyceride measurements were not significantly different between the two groups, however, the LPL activity was lower in tamoxifen-treated rats (p < 0.005). In experiment 2, triglycerides in VLDL were significantly higher after VLDL and LPL were incubated with tamoxifen and estrogen (p < 0.005). We concluded that tamoxifen inhibits the hydrolytic activity of LPL in vivo and in vitro. This mechanism may explain the elevated serum triglyceride levels in some patients treated with tamoxifen.  相似文献   

19.
The aim of this study was to determine the effect of oleic acid and insulin on the secretion of lipoproteins by HepG2 cells grown in minimum essential medium. Triglycerides were the major neutral lipid (57% of total) and apoB was the predominant apolipoprotein (56% of total) secreted by these cells. The addition of oleate resulted in a two-fold increase in the concentration of neutral lipids but only a slight to moderate increase in the apolipoprotein (A-I, A-II, B, and E) levels. The secretion of very low density lipoproteins (VLDL) was stimulated by 425%, low density lipoproteins (LDL) by 77%, and high density lipoproteins (HDL) by 68%. Whereas neutral lipid composition of LDL was unchanged, the VLDL particles contained a significantly higher percentage of triglyceride and lower percentages of cholesterol and cholesteryl esters compared with VLDL secreted in the absence of oleate. Oleate had no significant effect on the composition of apolipoproteins in VLDL, LDL and HDL. In basal medium, insulin caused a significant decrease in the secretion of neutral lipids and apolipoproteins, particularly triglycerides and apoB. In addition to a 60-68% reduction in the total concentration of VLDL and LDL, insulin altered their composition by producing particles that had a significantly lower content of triglycerides, contained less apoB, and were deficient in apoE. There were no major changes in the concentration or composition of HDL particles. Insulin had a similar but less pronounced effect on the concentration and composition of lipoproteins secreted in the presence of oleate. The increased accumulation of triglycerides in the HepG2 cells concomitant with their reduced levels in the medium suggests that insulin may affect the secretion rather than synthesis of triglyceride-rich lipoproteins.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号