首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A comparison of the soluble and cell-wall-bound isoperoxidases of normal auxin-requiring and auxin-independent (habituated) tobacco callus revealed that normal tissues contained a higher level of isoperoxidases. There were also qualitative differences in these isoperoxidases. Partially purified soluble and ionically bound isoperoxidases of normal callus likewise exhibited higher auxin-oxidase activities. Normal tissues also were found to contain higher levels of auxin-oxidase inhibitors (auxin protectors). Overall, however, the data indicate that there is a higher rate of auxin destruction in normal tobacco callus than in habituated tissue. This presumably leads to insufficient endogenous auxin for growth. This study was supported in part by grants to T.G. from the Center IRSIA d'Etude de la Reproduction végétale and the FRFC Contract No. 2.9009. it Was carried out while T.A.T. was the holder of a senior Fellowship under the NATO senior Scientists Program.  相似文献   

2.
Summary Autolysing plant tissues are known to produce auxin when extracted with ether. It has been shown that autolysing plant, yeast and rat liver tissues produce auxin in vitro; this suggests that relatively unspecific mechanisms are involved. Furthermore, sterile plant and animal tissues which have been killed by freezing and thawing induce nodules of differentiated cells in a previously undifferentiated callus of Phaseolus vulgaris. The callus tissue is known to differentiate in response to applied gradients of auxin. Plant and animal tissues killed by boiling were considerably less effective in inducing differentiation in the tissue. The evidence indicates that auxin is a normal product of autolysing cells. It is suggested that dying cells are an important source of auxin in the plant.  相似文献   

3.
The dependence of morphogenetic processes in the formation of vegetative and generative organs in spring oilseed rape and barley on exogenously applied physiological analogues of auxin: 2,4-D (2,4-dichlorphenoxyacetic acid), NAA (naphthalene-1-acetic acid), TA-12 (1-[2-chloroethoxycarbonyl-methyl]-4-naphthalenesulfonic acid calcium salt) and TA-14 (1-[2-dimethylaminoethoxicarbonylmethyl]naphtalene chlormethylate) were investigated. The experiments were performed with hypocotyl tissue cultures of oilseed rape and barley microspores in vitro. The auxin analogues applied revealed differences of morphogenetic competence in dedifferentiation-redifferentiation processes that occurred in oilseed rape cultures. TA-12 and TA-14 applied together with NAA and BA (6-benzylaminopurine) caused more intensive callus growth in comparison with 2,4-D. Rhizogenesis was induced when 2,4-D was substituted by TA-12. Compound TA-14, unlike TA-12, facilitated the appearance and development of cotyledons in callus tissues. Hower the compounds TA-12 and TA-14 have no positive effect in monocot plant — barly anther culture for callogenesis and regeneration in comparison to indole-3-acetic acid (IAA). TA-14 and TA-12 showed similar but not identical auxin properties and demonstrated high efficiency as modifiers of rape-dicot plant growth and morphogenesis.  相似文献   

4.
The synthesis of 2,4-dichlorophenylselenoacetic acid (2,4-D-Se) may be completed in three steps starting from 2,4-dichloroaniline. The selenium is inserted in the molecule by reaction of a diazonium salt with potassium selenocyanate. 2,4-D-Se has been tested as an auxin in several bioassays including the regeneration of somatic embryos, adventitious root formation and the associated temporary increase of endogenous auxins at the induction phase, and callus formation, and compared with the natural auxin indoleacetic acid (IAA), the classical synthetic auxin(s) naphthaleneacetic acid (NAA) and/or 2,4-dichlorophenoxyacetic acid (2,4-D), and with the synthetic seleniated IAA, 3-(benzo[b]selenienyl) acetic acid, BSAA. These biological assays classified 2,4-D-Se together with BSAA among the most powerful synthetic auxins. The role of selenium is briefly discussed.  相似文献   

5.
Auxin autotrophic and heterotrophic lines of tobacco calli may differ not only in their indoleacetic acid (IAA) synthetizing abilities and sensitivities to exogenous auxins, but also in their gene expression patterns. Auxin autotrophic callus tissues from the leaf protoplasts of transgenic Nicotiana tabacum SR1 plants involving mas1′::GUS gene fusion were generated and the growth of cultures was compared with that of the heterotrophic lines of the same transgenic tissues on MS medium containing different concentrations of IAA or 2,4‐d . The mas1′::GUS gene fusion expression was investigated, together with the glutathione S‐transferase activities (GST, EC 2.5.1.18) in auxin autotrophic and heterotrophic tobacco calli. Both the mas1′ promoter and GST gene promoters contain ocs or ocs‐like elements, responsible for both auxin and ethylene/wound inducibility. The mas1′ promoter exhibited a much higher expression activity in the heterotrophic cultures growing on IAA than in the autotrophic ones, but in contrast with the natural auxin, the mas1′::GUS activity decreased at elevated 2,4‐d concentrations in the heterotrophic tissues and increased with increasing 2,4‐d concentrations in the autotrophic lines. The induction of GST activity by different exogenous auxin concentrations was much higher in the autotrophic lines, especially in the case of 2,4‐d . Higher concentrations of external 2,4‐d resulted in increased ethylene production, which displayed different kinetics in the two types of calli. The ethylene‐inducing 2,4‐d concentrations increased the growth of the heterotrophic, but decreased that of the autotrophic lines. Blocking the ethylene receptors and hence the signal perception by 2,5‐norbornadiene (NBD) in the heterotrophic tissues increased the 2,4‐d ‐induced mas1′ promoter and GST activities, suggesting that the gaseous hormone counteracted the auxin response pathway. This was not found in the autotrophic tissues, where NBD decreased the mas1′‐driven GUS activity. The GST activities were slightly decreased, or almost independent of the action of ethylene. It is suggested that the cross‐talk between the auxin‐ and ethylene‐induced signal transduction pathways may differ in the auxin autotrophic and heterotrophic lines.  相似文献   

6.
RAPD markers were used to detect DNA polymorphisms in callus tissues maintained at different auxin and cytokinin combinations. There is a higher level of genetic variablity in callus tissue maintained with the highest kinetin versus 2, 4-D concentration. Callus tissues subcultured in a 4.0 mg/L 2,4-D and 4.0 mg/L kinetin combination showed high similarity and can be recommended as more suitable sources for industrial procedures of extraction of natural products such as secondary metabolites since extraction protocols can be easily standardized using genetically uniform materials. The higher genetic diversity in callus tissues of C. peruvianus cultured at 4.0 mg/L 2,4-D and 8.0 mg/L kinetin indicates this tissue as a matrix for in vitro selection of cell lines for higher natural products production. RAPD markers are, therefore, effective tools useful for detecting DNA polymorphism in callus tissue as well as in the DNA identification of callus tissues maintained in different auxin and cytokinin combinations.  相似文献   

7.
Summary A detailed qualitative and quantitative analysis of the sterol content of normal (auxin and cytokinin requiring) and habituated (auxin and cytokinin independent) sugarbeet callus (Beta vulgaris L.altissima) was made using mass spectrometry with gas chromatography. The total sterol content of the two lines did not differ significantly. Δ7-Sterols were the most important class of sterols in the two sugarbeet callus lines, as in allChenopodiaceae. Elevated levels of Δ8-sterols were found in the habituated callus. These sterols are considered to be badly integrated in the membrane of eucaryotic cells. A partial blocking of Δ87-isomerase is hypothesized in the habituated cell line.  相似文献   

8.
High concentrations (0.1–1 mg/liter) of kinetin permittedcontinuous growth of auxin-requiring and cytokinin-nonrequiringtobacco calluses on a medium without auxin. This effect of kinetindid not seem to be due to perpetuating change in the tissuecharacter, because tissue was auxin-requiring when returnedto a kinetin free medium. Cytokinins, i.e. benzylaminopurineand geranylaminopurine, showed the same effect as kinetin inmaking auxin-requiring calluses grow without a supply of auxin. In auxin-requiring and cytokinin-nonrequiring calluses subculturedfor 3 years on a medium containing 1 mg/liter kinetin withoutauxin, at least 3 auxins were detected by bioassay; 2 in theacidic and 1 in the neutral fraction. One was identified asIAA by paper chromatography (bioassay), thin-layer chromatographyand gas chromatography. Reduced or no auxin activity was foundin calluses transferred to a medium without kinetin. Kinetinwas apparently required to maintain the endogenous auxin levelin callus tissues. Kinetin may act on the auxin requirement of callus via its effectson auxin metabolism. 1 Part XVI in the series "Studies on Plant Tissue Cultures". (Received April 11, 1972; )  相似文献   

9.
Development of auxin autotrophy in Nicotiana tabacum callus cultures   总被引:1,自引:0,他引:1  
Changes of auxin and ethylene metabolism of Nicotiana tabacum var. Xanthi callus were investigated in relation to auxin-independent growth. During the habituation process, changes occur progressively in hormone metabolism in auxin-heterotrophic tissues: the potential for the destruction of indoleacetic acid (IAA) increases, the IAA level in the cultures rises slightly, and the auxin sensitivity of the callus becomes modified. Preceding the onset of habituation, ethylene production is enhanced although the tissues retain their ability to undergo regeneration.
Gradual changes in auxin metabolism and ethylene production confirm the epigenetic character of the habituation process.  相似文献   

10.
Esaka M  Fujisawa K  Goto M  Kisu Y 《Plant physiology》1992,100(1):231-237
Ascorbate oxidase expression in pumpkin (Cucurbita spp.) tissues was studied. Specific ascorbate oxidase activities in pumpkin leaf and stem tissues were about 2 and 1.5 times that in the fruit tissues, respectively. In seeds, little ascorbate oxidase activity was detected. Northern blot analyses showed an abundant ascorbate oxidase mRNA in leaf and stem tissues. Fruit tissues had lower levels of ascorbate oxidase mRNA than leaf and stem tissues. Ascorbate oxidase mRNA was not detected in seeds. Specific ascorbate oxidase activity gradually increased during early seedling growth of pumpkin seeds. The increase was accompanied by an increase in ascorbate oxidase mRNA. When ascorbate oxidase activity in developing pumpkin fruits was investigated, the activities in immature fruits that are rapidly growing at 0, 2, 4, and 7 d after anthesis were much higher than those in mature fruits at 14 and 30 d after anthesis. The specific activity and mRNA of ascorbate oxidase markedly increased after inoculation of pumpkin fruit tissues into Murashige and Skoog's culture medium in the presence of an auxin such as 2,4-dichlorophenoxyacetic acid (2,4-D) but not in the absence of 2,4-D. In the presence of 10 mg/L of 2,4-D, ascorbate oxidase mRNA was the most abundant. Thus, ascorbate oxidase is induced by 2,4-D. These results indicate that ascorbate oxidase is involved in cell growth. In pumpkin callus, ascorbate oxidase activity could be markedly increased by adding copper. Furthermore, immunological blotting showed that the amount of ascorbate oxidase protein was also increased by adding copper. However, northern blot analyses showed that ascorbate oxidase mRNA was not increased by adding copper. We suggest that copper may control ascorbate oxidase expression at translation or at a site after translation.  相似文献   

11.
Pérez, L., Aguilar, R. and Sánchez-de-Jiménez, E. 1987. Effect of an exogenous auxin on maize tissues. Alteration of protein synthesis and phosphorylation. - Physiol. Plantarum 69: 517–522.
A synthetic auxin 2-(2-methyl-4-chloro)phenoxypropionic acid (MCPP), analogue of 2,4-D, alters maize ( Zea mays L. H-30) germination while inducing callus formation. The effect of this auxin on protein synthesis and phosphorylation of the embryonic tissues was explored. Total cytoplasmic proteins were analysed for 14C or 32P incorporation into trichloroacetic acid precipitable material. MCPP significantly stimulated protein synthesis as well as protein phosphorylation. The protein synthesis pattern was highly altered in the presence of MCPP as analysed by two-dimensional gel electrophoresis. Analyses by Sephadex G-100 chromatography and by two-dimensional gel electrophoresis of phosphorylated proteins indicate that the effect of MCPP on protein phosphorylation was only quantitative.  相似文献   

12.
Summary The effect ofin planta treatments with auxin inhibitors such as 2,3,5 triiodobenzoic acid (TIBA) on regeneration of plantsin vitro is not known. Here, we show the beneficial effect of preconditioning sugarbeet plants in the greenhouse with TIBA (3 mg/1) for efficientin vitro plant regeneration via a callus phase from cultured leaf explants. Without this treatment, no shoot developed on the control leaf-calluses. Several hundred plants were routinely regenerated using this protocol. More importantly, the number of shoots per explantcallus increased drastically over the subsequent subculture period. The most favorable media for callus induction contained a combination of an auxin and a cytokinin (0.1 mg/1 2,4-dichlorophenoxyacetic acid and 1 mg/1 N-6 benzylaminopurine) or a cytokinin alone (2.2 mg/1 thidiazuron). However, only the callus derived from leaves of TIBA-treated genotypes and induced on thidiazuron-medium produced numerous shoots. Histological studies showed the formation of meristematic zones only in the organogenic callus developed on thidiazuron-coutaining medium. The analysis of peroxidase activity showed that the activity was higher for the TIBA-treated plants than for the untreated control plants.  相似文献   

13.
Cytokinin affects the requirement for auxin of a strain of tobacco callus (Nicotiana tabacum) which is cytokinin-autotrophic when grown on Murashige and Skoog medium with 11.4 mum of indole-3-acetic acid but requires cytokinin 6-(3-methyl-2-butenylamino)purine (i(6) Ade) when grown on the same medium with <3 mum indole-3-acetic acid. As the exogenous concentration of cytokinin (i(6) Ade) is increased, the concentration of indole-3-acetic acid required for growth is decreased. A second effect of cytokinin, observed sporadically in cultures with 2.5 mum or 5 mum i(6) Ade, is the transformation of some of the callus pieces to auxin-autotrophic growth. Strains, both callus-forming and bud-forming tissues, that arise in this manner are not permanently altered in their auxin requirement because subcultures on medium without cytokinin still require exogenous auxin.  相似文献   

14.
Various tissues of seeds and seedlings of melon were cultured in vitro to study the effects of auxin concentration on organogenesis and embryogenesis. Adventitious shoots and somatic embryos were formed from explants of cotyledons of mature seeds, hypocotyls of seedlings, and leaves and petioles of young plantlets. Expanded cotyledons of seedlings formed only adventitious shoots. All tissues responded similarly to the 2,4-D concentration in the media, that is, adventitious shoots were formed at low concentration, callus proliferated without differentiation at intermediate concentration and somatic embryos were induced at high concentration. Cotyledons of mature seeds formed both adventitious shoots and somatic embryos more efficiently than any other tissues cultured.Effects of three auxins, 2,4-D, NAA and IAA, on organogenesis and embryogenesis were compared using cotyledons of mature seeds. Adventitious shoots were formed at low level of auxins (0 to 0.01 mg/l 2,4-D; 0 to 0.1 mg/l NAA; 0 to 1.0 mg/l IAA), and embryos were formed at high level of auxins (1.0 to 2.0 mg/l 2,4-D; 3.0 to 10.0 mg/l NAA; 20.0 to 100.0 mg/l IAA). IAA gave more efficient shoot formation and embryogenesis than the other auxins.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - IAA 3indoleacetic acid - BA 6-benzylaminopurine - MS Murashige and Skoog  相似文献   

15.
Bound auxin metabolism in cultured crown-gall tissues of tobacco   总被引:1,自引:1,他引:0  
Bound auxin metabolism in cultured crown-gall tumor cells and pith callus of tobacco was examined by feeding radiolabeled auxins and auxin conjugates. In all tissues fed [14C]indoleacetic acid (IAA), at least one-third of the IAA was decarboxylated, and most of the remaining radiolabel occurred in a compound(s) which did not release IAA with alkaline hydrolysis. In cells transformed by the A6 strain of Agrobacterium tumefaciens, the only detectable IAA conjugate was indole-3-acetylaspartic acid (IAAsp), whereas cells transformed by the gene 2 mutant strain A66 produced an unidentified amide conjugate but no IAAsp. By contrast, cells fed [14C]naphthaleneacetic acid (NAA) accumulated several amide and ester conjugates. The major NAA metabolite in A6-transformed cells was naphthaleneacetylaspartic acid (NAAsp), whereas the major metabolites in A66-transformed cells were NAA esters. In addition, A66-transformed cells produced an amide conjugate of NAA which was not found in A6-transformed cells and which showed chromatographic properties similar to the unknown IAA conjugate. Pith callus fed [14C] NAA differed from both tumor lines in that it preferentially accumulated amide conjugates other than NAAsp. Differences in the accumulation of IAA and NAA conjugates were attributed in part to the high capacity of tobacco cells to oxidize IAA and in part to the specificity of bound auxin hydrolases. All tissues readily metabolized IAAsp and indole-3-acetyl-myo-inositol, but hydrolyzed NAAsp very slowly. Indirect evidence is provided which suggests that ester conjugates of NAA are poorly hydrolyzed as well. Analysis of tissues fed [14C]NAA together with high concentrations of unlabeled IAA or NAA indicates that tissue-specific differences in NAA metabolism were not the result of variation in endogenous auxin levels. Our results support the view that bound auxin hydrolysis is highly specific and an important factor controlling bound auxin accumulation.  相似文献   

16.
Influence of auxin type and concentration on peanut somatic embryogenesis   总被引:8,自引:0,他引:8  
Somatic embryogenesis in peanut (Arachis hypogaea L.) using immature cotyledonary explants was induced on a wide range of 2,4-dichlorophenoxyacetic acid (2,4-D) (5 to 60mg l–1) and naphthaleneacetic acid (NAA) (20 to 50 mg l–1) levels. Percent embryogenesis ranged from 31 to 94%. As auxin level increased in induction medium, percent embryogenesis decreased and was associated with browning of explants. However, with higher 2,4-D induction levels (40 mg l–1 and over), embryogenic explants had dense masses of embryogenic areas and repetitive embryogenesis was enhanced. Higher auxin concentrations during induction decreased precocious germination of embryos, but had no marked effect on somatic embryo morphology. The use of 2,4-D compared to NAA in the induction medium resulted in greater per cent embryogenesis and mean number of embryos. Embryos induced on NAA were harder, less pliant, and less succulent; cultures exhibited more extensive root development and nonembryogenic callus proliferation.Abbreviations B5 Gamborg et al. (1968) - BA benzyladenine - 2,4-D dichlorophenoxyacetic acid - IAA indole-3-acetic acid - MS Murashige & Skoog (1962) - NAA naphthaleneacetic acid - picloram 4-amino-3,5,6-trichloropicolinic acid  相似文献   

17.
Effects of various auxins on callus induction (dedifferentiation) and organ redifferentiation from the callus were studied by using various tissues of rice,Oryza sativa L. cv. Kyoto Asahi. 2,4-D, NAA and IAA were used as auxins for the test of their ability to induce callus. All of these were active. This callus induction by auxin was successful in all tissues used; seed, root, shoot nodule, anther and ovary. In all of the calluses induced by various auxins such as 2,4-D, NAA and IAA and derived from various tissues such as seed, root, shoot nodule, anther and ovary, organ redifferentiation, i.e., formation of shoots and roots was achieved by removing the auxins from the medium used for the callus calture. Cytokinins were not necessary for the organ redifferentiation in these calluses. These results suggest that auxin is the only exogenous factor that determines dedifferentiation and redifferentiation in rice plant tissues culturedin vitro.  相似文献   

18.
Auxin protectors and IAA oxidase activity were comparatively analyzed in the upper and the lower parts of shoots of chestnut ( Castanea sativa Mill.) cultivated in vitro with indolebutyric acid (IBA) pretreatment. Rhizogenesis of the shoots is accompanied by an increase in auxin protectors in the lower parts and by a decrease of these protectors in the upper parts. Besides, the IAA oxidase activity declines in the basal parts during the rooting process while it increases in the upper ones. These biochemical events would enhance the IAA level in the rooting region of the shoots. In untreated, non-rooted cuttings, the IAA oxidase activity remains low in the upper parts and high in the basal parts of the shoots. The results thus indicate that the IBA treatment may control the endogenous auxin level of the cuttings, either through a direct regulation of the IAA oxidase system or more indirectly through the transport of auxin protectors.  相似文献   

19.
Shinohara N  Sugiyama M  Fukuda H 《Planta》2006,224(2):394-404
In an optimized liquid medium containing auxin and cytokinin, mesophyll cells isolated from Zinnia elegans L. seedlings can be induced to differentiate into tracheary elements (TEs) at high frequency. However, it is known that buffering the medium at neutral pH severely suppresses TE differentiation. In the process of modifying the medium, we found that excessive administration of auxin restored the suppression. Based on this finding, we physiologically characterized auxin actions involved in TE differentiation by focusing on the influence of extracellular pH. First, dose/response relationships between auxin [1-naphthaleneacetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D)] concentrations and differentiated cell ratios were determined under various extracellular pH conditions. Secondly, intracellular concentrations of free forms and metabolites of auxin species were determined by analyzing extracts from cells cultured with radiolabeled NAA and 2,4-D under different extracellular pH conditions with liquid scintillation counting and thin-layer chromatography autoradiograms. Higher extracellular pH was found to reduce both the auxin potency for inducing TE differentiation and intracellular auxin accumulation. Reduction levels correlatively varied depending on the auxin species. These results suggest that the weakening in auxin potency at higher extracellular pH is ascribed to lower auxin uptake, which leads to decreased intracellular perception of the auxin signal. A model to predict auxin action that considers membrane transport, metabolism, and the perception of auxin is also presented.  相似文献   

20.
Auxin content and IAA-protector activities in cultured crowngall cells were measured at various points of growth in subculture.A coincidence was observed between the change in IAA contentand IAA-protector activities in the cells: high auxin contentswith high IAA-protector activities were obtained at the latelog stage, and low auxin contents with low IAA-protector activitiesat the middle log and at the stationary stages. On the otherhand, IAA-destruction activities in the cells increased slightlythroughout the growth period of the cells. Addition of 2,4-Dto the culture depressed the auxin content and accelerated theIAA-destruction activity in the cells. These results suggestthe existence of a mechanism of negative-feed-back control ofauxin in crown gall cells. (Received May 1, 1978; )  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号